ArticleOriginal scientific text
Title
Symmetric partitions and pairings
Authors 1
Affiliations
- Rényi Alfréd Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda u. 13-15, H-1053 Budapest, Hungary
Abstract
The lattice of partitions and the sublattice of non-crossing partitions of a finite set are important objects in combinatorics. In this paper another sublattice of the partitions is investigated, which is formed by the symmetric partitions. The measure whose nth moment is given by the number of non-crossing symmetric partitions of n elements is determined explicitly to be the "symmetric" analogue of the free Poisson law.
Bibliography
- N. I. Akhiezer, Classical Moment Problem, Gos. Izdat. Fiz.-Mat. Liter., Moscow, 1961 (in Russian).
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976.
- F. Hiai and D. Petz, The semi-circle law, free random variables and entropy, preprint.
- G. Kreweras, Sur les partitions non-croisées d'un cycle, Discrete Math. 1 (1972), 333-350.
- F. Oravecz and D. Petz, On the eigenvalue distribution of some symmetric random matrices, Acta Sci. Math. (Szeged) 63 (1997), 383-395.
- J. Touchard, Sur un problème de configurations et sur les fractions continues, Canad. J. Math. 4 (1952), 2-25.
- D. Voiculescu, K. Dykema and A. Nica, Free Random Variables, CRM Monogr. Ser. 1, Amer. Math. Soc., Providence, RI, 1992.