Download PDF - $H^1$-BMO duality on graphs
ArticleOriginal scientific text
Title
-BMO duality on graphs
Authors 1
Affiliations
- Faculté des Sciences et Techniques de Saint-Jérôme, Laboratoire de Mathématiques Fondamentales et Appliquées, Case Cour A, 13397 Marseille Cedex 20, France
Abstract
On graphs satisfying the doubling property and the Poincaré inequality, we prove that the space is equal to , and therefore that its dual is BMO. We also prove the atomic decomposition for for p ≤ 1 close enough to 1.
Bibliography
- [AC] P. Auscher and T. Coulhon, Gaussian lower bounds for random walks from elliptic regularity, Ann. Inst. H. Poincaré Probab. Statist. 35 (1999), 605-630.
- [CAR] L. Carleson, Two remarks on
and BMO, Adv. Math. 22 (1976), 269-277. - [COI] R. Coifman, A real-variable characterization of
, Studia Math. 51 (1974), 269-274. - [CW] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
- [DEL1] T. Delmotte, Versions discrètes de l'inégalité de Harnack, thesis, University of Cergy-Pontoise, 1997.
- [DEL2] T. Delmotte, Parabolic Harnack inequality and estimates of Markov chains on graphs, Rev. Mat. Iberoamericana 15 (1999), 181-232.
- [HOR] L. Hörmander,
estimates for (pluri-)subharmonic functions, Math. Scand. 20 (1967), 65-78. - [LAT] R. H. Latter, A decomposition of
in terms of atoms, Studia Math. 62 (1978), 92-101. - [MS1] R. Macías and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. Math. 33 (1979), 257-270.
- [MS2] R. Macías and C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. Math. 33 (1979), 271-309.
- [MEY] Y. Meyer, Dualité entre
et BMO sur les espaces de type homogène par Lennart Carleson, unpublished notes. - [RUS] E. Russ,
-BMO duality on Riemannian manifolds, preprint. - [SC] L. Saloff-Coste, Analyse sur les groupes de Lie à croissance polynomiale, Ark. Mat. 28 (1990), 315-331.
- [ST] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.
- [UCH] A. Uchiyama, A maximal function characterization of
on the space of homogeneous type, Trans. Amer. Math. Soc. 262 (1980), 579-592.