ArticleOriginal scientific text

Title

H1-BMO duality on graphs

Authors 1

Affiliations

  1. Faculté des Sciences et Techniques de Saint-Jérôme, Laboratoire de Mathématiques Fondamentales et Appliquées, Case Cour A, 13397 Marseille Cedex 20, France

Abstract

On graphs satisfying the doubling property and the Poincaré inequality, we prove that the space H1_{max} is equal to Hat1, and therefore that its dual is BMO. We also prove the atomic decomposition for Hp_{max} for p ≤ 1 close enough to 1.

Bibliography

  1. [AC] P. Auscher and T. Coulhon, Gaussian lower bounds for random walks from elliptic regularity, Ann. Inst. H. Poincaré Probab. Statist. 35 (1999), 605-630.
  2. [CAR] L. Carleson, Two remarks on H1 and BMO, Adv. Math. 22 (1976), 269-277.
  3. [COI] R. Coifman, A real-variable characterization of Hp, Studia Math. 51 (1974), 269-274.
  4. [CW] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
  5. [DEL1] T. Delmotte, Versions discrètes de l'inégalité de Harnack, thesis, University of Cergy-Pontoise, 1997.
  6. [DEL2] T. Delmotte, Parabolic Harnack inequality and estimates of Markov chains on graphs, Rev. Mat. Iberoamericana 15 (1999), 181-232.
  7. [HOR] L. Hörmander, Lp estimates for (pluri-)subharmonic functions, Math. Scand. 20 (1967), 65-78.
  8. [LAT] R. H. Latter, A decomposition of Hp(n) in terms of atoms, Studia Math. 62 (1978), 92-101.
  9. [MS1] R. Macías and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. Math. 33 (1979), 257-270.
  10. [MS2] R. Macías and C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. Math. 33 (1979), 271-309.
  11. [MEY] Y. Meyer, Dualité entre H1 et BMO sur les espaces de type homogène par Lennart Carleson, unpublished notes.
  12. [RUS] E. Russ, H1-BMO duality on Riemannian manifolds, preprint.
  13. [SC] L. Saloff-Coste, Analyse sur les groupes de Lie à croissance polynomiale, Ark. Mat. 28 (1990), 315-331.
  14. [ST] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.
  15. [UCH] A. Uchiyama, A maximal function characterization of Hp on the space of homogeneous type, Trans. Amer. Math. Soc. 262 (1980), 579-592.
Pages:
67-91
Main language of publication
English
Received
1998-10-30
Accepted
1999-08-30
Published
2000
Exact and natural sciences