ArticleOriginal scientific text

Title

Blow up, global existence and growth rate estimates in nonlinear parabolic systems

Authors 1

Affiliations

  1. Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warszawa, Poland

Abstract

We prove Fujita-type global existence and nonexistence theorems for a system of m equations (m > 1) with different diffusion coefficients, i.e. uit-diΔui=k=1mukpki,i=1,...,m,xN,t>0, with nonnegative, bounded, continuous initial values and pki0, i,k=1,...,m, di>0, i=1,...,m. For solutions which blow up at t=T<, we derive the following bounds on the blow up rate: ui(x,t)C(T-t)-αi with C > 0 and αi defined in terms of pki.

Keywords

invariant manifold, reaction-diffusion system, invariant region, global existence, blow up

Bibliography

  1. [AHV] D. Andreucci, M. A. Herrero and J. J. L. Velázquez, Liouville theorems and blow up behaviour in semilinear reaction diffusion systems, Ann. Inst. H. Poincaré 14 (1997), 1-53.
  2. [CM] G. Caristi and E. Mitidieri, Blow up estimates of positive solutions of a parabolic system, J. Differential Equations 113 (1994), 265-271.
  3. [EH] M. Escobedo and M. A. Herrero, Boundedness and blow up for a semilinear reaction-diffusion system, ibid. 89 (1991), 176-202.
  4. [EL] M. Escobedo and H. A. Levine, Critical blow up and global existence numbers for a weakly coupled system of reaction-diffusion equations, Arch. Rational Mech. Anal. 129 (1995), 47-100.
  5. [Fu1] H. Fujita, On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations, in: Proc. Sympos. Pure Math. 18, Amer. Math. Soc., 1970, 105-113.
  6. [Fu2] H. Fujita, On the blowing up of solutions of the Cauchy problem for ut=Δu+u1+α, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 13 (1966), 109-124.
  7. [GK] Y. Giga and R. V. Kohn, Characterizing blow-up using similarity variables, Indiana Univ. Math. J. 36 (1987), 1-40.
  8. [H] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, Heidelberg, 1981.
  9. [L] G. Lu, Global existence and blow-up for a class of semilinear parabolic systems: a Cauchy problem, Nonlinear Anal. 24 (1995), 1193-1206.
  10. [LS] G. Lu and B. D. Sleeman, Subsolutions and supersolutions to systems of parabolic equations with applications to generalized Fujita type systems, Math. Methods Appl. Sci. 17 (1994), 1005-1016.
  11. [R1] J. Rencławowicz, Global existence and blow up of solutions for a completely coupled Fujita type system of reaction-diffusion equations, Appl. Math. (Warsaw) 25 (1998), 313-326.
  12. [R2] J. Rencławowicz, Global existence and blow up of solutions for a class of reaction-diffusion systems, J. Appl. Anal., to appear.
  13. [R3] J. Rencławowicz, Global existence and blow up of solutions for a weakly coupled Fujita type system of reaction-diffusion equations, ibid., to appear.
  14. [R4] J. Rencławowicz, Global existence and blow-up for a completely coupled Fujita type system, Appl. Math. (Warsaw) 27 (2000), 203-218.
Pages:
43-66
Main language of publication
English
Received
1998-12-10
Accepted
1999-07-19
Published
2000
Exact and natural sciences