ArticleOriginal scientific text
Title
Infinite families of noncototients
Authors 1, 1
Affiliations
- FSP Mathematisierung, Universität Bielefeld, Postfach 10 01 31, 33 501 Bielefeld, Germany
Abstract
For any positive integer let ϕ(n) be the Euler function of n. A positive integer is called a noncototient if the equation x-ϕ(x)=n has no solution x. In this note, we give a sufficient condition on a positive integer k such that the geometrical progression consists entirely of noncototients. We then use computations to detect seven such positive integers k.
Bibliography
- J. Browkin and A. Schinzel, On integers not of the form n-ϕ(n), Colloq. Math. 68 (1995), 55-58.
- P. Erdős, On integers of the form
and related problems, Summa Brasil. Math. 2 (1950), 113-123. - R. K. Guy, Unsolved Problems in Number Theory, Springer, 1994.
- H. Riesel, Nοgra stora primtal [Some large primes], Elementa 39 (1956), 258-260 (in Swedish).
- W. Sierpiński, Sur un problème concernant les nombres
, Elem. Math. 15 (1960), 73-74; Corrigendum, ibid. 17 (1962), 85. - The Riesel Problem, http:/vamri.xray.ufl.edu/proths/rieselprob.html.