ArticleOriginal scientific text

Title

Infinite families of noncototients

Authors 1, 1

Affiliations

  1. FSP Mathematisierung, Universität Bielefeld, Postfach 10 01 31, 33 501 Bielefeld, Germany

Abstract

For any positive integer n let ϕ(n) be the Euler function of n. A positive integer n is called a noncototient if the equation x-ϕ(x)=n has no solution x. In this note, we give a sufficient condition on a positive integer k such that the geometrical progression (2mk)m1 consists entirely of noncototients. We then use computations to detect seven such positive integers k.

Bibliography

  1. J. Browkin and A. Schinzel, On integers not of the form n-ϕ(n), Colloq. Math. 68 (1995), 55-58.
  2. P. Erdős, On integers of the form 2k+p and related problems, Summa Brasil. Math. 2 (1950), 113-123.
  3. R. K. Guy, Unsolved Problems in Number Theory, Springer, 1994.
  4. H. Riesel, Nοgra stora primtal [Some large primes], Elementa 39 (1956), 258-260 (in Swedish).
  5. W. Sierpiński, Sur un problème concernant les nombres k·2n+1, Elem. Math. 15 (1960), 73-74; Corrigendum, ibid. 17 (1962), 85.
  6. The Riesel Problem, http:/vamri.xray.ufl.edu/proths/rieselprob.html.
Pages:
37-41
Main language of publication
English
Received
1999-07-02
Published
2000
Exact and natural sciences