ArticleOriginal scientific text
Title
On a conjecture of Mąkowski and Schinzel concerning the composition of the arithmetic functions σ and ϕ
Authors 1, 2, 1
Affiliations
- Institute of Mathematics, T. Kotarbiński Pedagogical University, 65-069 Zielona Góra, Poland
- Fachbereich Mathematik, Universität Bielefeld, 33501 Bielefeld, Germany
Abstract
For any positive integer n let ϕ(n) and σ(n) be the Euler function of n and the sum of divisors of n, respectively. In [5], Mąkowski and Schinzel conjectured that the inequality σ(ϕ(n)) ≥ n/2 holds for all positive integers n. We show that the lower density of the set of positive integers satisfying the above inequality is at least 0.74.
Bibliography
- U. Balakrishnan, Some remark on σ(ϕ(n)), Fibonacci Quart. 32 (1994), 293-296.
- G. L. Cohen, On a conjecture of Mąkowski and Schinzel, Colloq. Math. 74 (1997), 1-8.
- M. Filaseta, S. W. Graham and C. Nicol, On the composition of σ(n) and ϕ(n), Abstracts Amer. Math. Soc. 13 (1992), no. 4, p. 137.
- R. K. Guy, Unsolved Problems in Number Theory, Springer, 1994.
- A. Mąkowski and A. Schinzel, On the functions ϕ(n) and σ(n), Colloq. Math. 13 (1964-1965), 95-99.
- D. S. Mitrinović, J. Sándor and B. Crstici, Handbook of Number Theory, Kluwer, 1996.
- C. Pomerance, On the composition of the arithmetic functions σ and ϕ, Colloq. Math. 58 (1989), 11-15.