ArticleOriginal scientific text
Title
A note on a conjecture of Jeśmanowicz
Authors 1, 2
Affiliations
- Heilongjiang Nongken Teachers' College, A Cheng City, People's Republic of China
- School of Mathematical Sciences, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
Abstract
Let a, b, c be relatively prime positive integers such that . Jeśmanowicz conjectured in 1956 that for any given positive integer n the only solution of in positive integers is x=y=z=2. If n=1, then, equivalently, the equation , for integers u>v>0, has only the solution x=y=z=2. We prove that this is the case when one of u, v has no prime factor of the form 4l+1 and certain congruence and inequality conditions on u, v are satisfied.
Bibliography
- J. R. Chen, On Jeśmanowicz' conjecture, Acta Sci. Natur. Univ. Szechan 2 (1962), 19-25 (in Chinese).
- V. A. Dem'janenko [V. A. Dem'yanenko], On Jeśmanowicz' problem for Pythagorean numbers, Izv. Vyssh. Uchebn. Zaved. Mat. 48 (1965), 52-56 (in Russian).
- M. Deng and G. L. Cohen, On the conjecture of Jeśmanowicz concerning Pythagorean triples, Bull. Austral. Math. Soc. 57 (1998), 515-524.
- L. Jeśmanowicz, Several remarks on Pythagorean numbers, Wiadom. Mat. 1 (1955/56), 196-202 (in Polish).
- C. Ko, On the Diophantine equation
, Acta Sci. Natur. Univ. Szechan 3 (1959), 25-34 (in Chinese). - M. H. Le, A note on Jeśmanowicz' conjecture concerning Pythagorean numbers, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), 97-98.
- W. T. Lu, On the Pythagorean numbers
, 4n and , Acta Sci. Natur. Univ. Szechuan 2 (1959), 39-42 (in Chinese). - W. Sierpiński, On the equation
, Wiadom. Mat. 1 (1955/56), 194-195 (in Polish). - K. Takakuwa, On a conjecture on Pythagorean numbers. III, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 345-349.
- K. Takakuwa, A remark on Jeśmanowicz' conjecture, ibid. 72 (1996), 109-110.