ArticleOriginal scientific text

Title

A note on a conjecture of Jeśmanowicz

Authors 1, 2

Affiliations

  1. Heilongjiang Nongken Teachers' College, A Cheng City, People's Republic of China
  2. School of Mathematical Sciences, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia

Abstract

Let a, b, c be relatively prime positive integers such that a2+b2=c2. Jeśmanowicz conjectured in 1956 that for any given positive integer n the only solution of (an)x+(bn)y=(cn)z in positive integers is x=y=z=2. If n=1, then, equivalently, the equation (u2-v2)x+(2uv)y=(u2+v2)z, for integers u>v>0, has only the solution x=y=z=2. We prove that this is the case when one of u, v has no prime factor of the form 4l+1 and certain congruence and inequality conditions on u, v are satisfied.

Bibliography

  1. J. R. Chen, On Jeśmanowicz' conjecture, Acta Sci. Natur. Univ. Szechan 2 (1962), 19-25 (in Chinese).
  2. V. A. Dem'janenko [V. A. Dem'yanenko], On Jeśmanowicz' problem for Pythagorean numbers, Izv. Vyssh. Uchebn. Zaved. Mat. 48 (1965), 52-56 (in Russian).
  3. M. Deng and G. L. Cohen, On the conjecture of Jeśmanowicz concerning Pythagorean triples, Bull. Austral. Math. Soc. 57 (1998), 515-524.
  4. L. Jeśmanowicz, Several remarks on Pythagorean numbers, Wiadom. Mat. 1 (1955/56), 196-202 (in Polish).
  5. C. Ko, On the Diophantine equation (a2-b2)x+(2ab)y=(a2+b2)z, Acta Sci. Natur. Univ. Szechan 3 (1959), 25-34 (in Chinese).
  6. M. H. Le, A note on Jeśmanowicz' conjecture concerning Pythagorean numbers, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), 97-98.
  7. W. T. Lu, On the Pythagorean numbers 4n2-1, 4n and 4n2+1, Acta Sci. Natur. Univ. Szechuan 2 (1959), 39-42 (in Chinese).
  8. W. Sierpiński, On the equation 3x+4y=5z, Wiadom. Mat. 1 (1955/56), 194-195 (in Polish).
  9. K. Takakuwa, On a conjecture on Pythagorean numbers. III, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 345-349.
  10. K. Takakuwa, A remark on Jeśmanowicz' conjecture, ibid. 72 (1996), 109-110.
Pages:
25-30
Main language of publication
English
Received
1999-05-14
Published
2000
Exact and natural sciences