ArticleOriginal scientific text

Title

On the K-theory of tubular algebras

Authors 1

Affiliations

  1. Fachbereich 17 Mathematik, Universität Paderborn, D-33095 Paderborn, Germany

Abstract

Let Λ be a tubular algebra over an arbitrary base field. We study the Grothendieck group K0(Λ), endowed with the Euler form, and its automorphism group Aut(K0(Λ)) on a purely K-theoretical level as in [7]. Our results serve as tools for classifying the separating tubular families of tubular algebras as in the example [5] and for determining the automorphism group Aut(DbΛ) of the derived category of Λ.

Bibliography

  1. M. Barot, Representation-finite derived tubular algebras, Arch. Math. (Basel) 74 (2000), 83-94.
  2. M. Barot and J. A. de la Pe na, Derived tubular strongly simply connected algebras, Proc. Amer. Math. Soc. 127 (1999), 647-655.
  3. D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press, 1988.
  4. N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Grad. Texts in Math., 97, Springer, Berlin, 1984.
  5. D. Kussin, Non-isomorphic derived-equivalent tubular curves and their associated tubular algebras, J. Algebra 226 (2000), 436-450.
  6. D. Kussin, Graduierte Faktorialität und die Parameterkurven tubularer Familien, Ph.D. thesis, Universität Paderborn, 1997.
  7. H. Lenzing, A K-theoretic study of canonical algebras, in: Representation Theory of Algebras (Cocoyoc, 1994), R. Bautista, R. Mart\'\inez-Villa, and J. A. de la Pe na (eds.), CMS Conf. Proc. 18, Amer. Math. Soc., Providence, RI, 1996, 433-473.
  8. H. Lenzing, Representations of finite dimensional algebras and singularity theory, in: Trends in Ring Theory (Miskolc, 1996) V. Dlab et al. (eds.), CMS Conf. Proc. 22, Amer. Math. Soc., Providence, RI, 1998, 71-97.
  9. H. Lenzing and H. Meltzer, The automorphism group of the derived category for a weighted projective line, Comm. Algebra 28 (2000), 1685-1700.
  10. H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one, and representations of a tubular algebra, in: Representations of Algebras (Ottawa 1992), V. Dlab and H. Lenzing (eds.), CMS Conf. Proc. 14, Amer. Math. Soc., Providence, RI, 1993, 313-337.
  11. H. Lenzing and J. A. de la Pe na, Concealed-canonical algebras and separating tubular families, Proc. London Math. Soc. 78 (1999), 513-540.
  12. C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984.
  13. C. M. Ringel, The canonical algebras, in: Topics in Algebra, Banach Center Publ. 26, 1990, with an appendix by William Crawley-Boevey, 407-432.
Pages:
137-152
Main language of publication
English
Received
1999-08-02
Accepted
1999-11-10
Published
2000
Exact and natural sciences