ArticleOriginal scientific text
Title
Ergodic decomposition of quasi-invariant probability measures
Authors 1, 1
Affiliations
- Mathematics Institute, University of Vienna, Strudlhofgasse 4, A-1090 Wien, Austria
Abstract
The purpose of this note is to prove various versions of the ergodic decomposition theorem for probability measures on standard Borel spaces which are quasi-invariant under a Borel action of a locally compact second countable group or a discrete nonsingular equivalence relation. In the process we obtain a simultaneous ergodic decomposition of all quasi-invariant probability measures with a prescribed Radon-Nikodym derivative, analogous to classical results about decomposition of invariant probability measures.
Keywords
ergodic decomposition, nonsingular group actions, nonsingular equivalence relations, quasi-invariant measures
Bibliography
- P. Billingsley, Probability and Measure, Wiley, New York, 1979.
- R. V. Chacon and D. S. Ornstein, A general ergodic theorem, Illinois J. Math. 4 (1960), 153-160.
- J. Feldman, P. Hahn and C. C. Moore, Orbit structure and countable sections for actions of continuous groups, Adv. Math. 28 (1978), 186-230.
- J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), 289-324.
- S. R. Foguel, Ergodic decomposition of a topological space, Israel J. Math. 7 (1969), 164-167.
- E. Hopf, On the ergodic theorem for positive linear operators, J. Reine Angew. Math. 205 (1960), 101-106.
- A. S. Kechris, Countable sections for locally compact groups, Ergodic Theory Dynam. Systems 12 (1992), 283-295.
- J. Kerstan and A. Wakolbinger, Ergodic decomposition of probability laws, Z. Wahrsch. Verw. Gebiete 56 (1981), 399-414.
- Yu. I. Kifer and S. A. Pirogov, On the decomposition of quasi-invariant measures into ergodic components, Uspekhi Mat. Nauk 27 (1972), no. 5, 239-240 (in Russian).
- N. Lusin, Leçons sur les ensembles analytiques et leurs applications, Gauthier-Villars, Paris, 1930.
- W. Parry, Topics in Ergodic Theory, Cambridge Univ. Press, Cambridge, 1981.
- K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, 1967.
- R. R. Phelps, Lectures on Choquet's Theorem, van Nostrand Reinhold, New York, 1966.
- A. Ramsay, Virtual groups and group actions, Adv. Math. 6 (1971), 253-322.
- A. Ramsay, Subobjects of virtual groups, Pacific J. Math. 87 (1980), 389-454.
- K. Schmidt, Cocycles on Ergodic Transformation Groups, MacMillan (India), Delhi, 1977.
- K. Schmidt, A probabilistic proof of ergodic decomposition, Sankhyā Ser. A 40 (1978), 10-18.
- K. Schmidt, Unique ergodicity for quasi-invariant measures, Math. Z. 167 (1979), 168-172.
- H. Shimomura, Ergodic decomposition of quasi-invariant measures, Publ. RIMS Kyoto Univ. 14 (1978), 359-381.
- H. Shimomura, Remark to the paper 'Ergodic decomposition of quasi-invariant measures', ibid. 19 (1983), 203-205.
- H. Shimomura, Remark to the ergodic decomposition, ibid. 26 (1990), 861-865.
- M. L. Sturgeon, The ergodic decomposition of conservative Baire measures, Proc. Amer. Math. Soc. 44 (1974), 141-146.
- V. S. Varadarajan, Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc. 109 (1963), 191-220.
- J. von Neumann, On rings of operators. Reduction theory, Ann. of Math. 50 (1949), 401-485.
- R. J. Zimmer, Ergodic Theory and Semisimple Groups, Birkhäuser, Boston, 1984.