ArticleOriginal scientific text

Title

Marches en milieu aléatoire et mesures quasi-invariantes pour un système dynamique

Authors 1, 1

Affiliations

  1. IRMAR, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract

The invariant measures for a Markovian operator corresponding to a random walk, in a random stationary one-dimensional environment defined by a dynamical system, are quasi-invariant measures for the system. We discuss the construction of such measures in the general case and show unicity, under some assumptions, for a rotation on the circle.

Bibliography

  1. S. Alili, Processus de branchement et marche aléatoire en milieux désordonnés, thèse, Université Pierre et Marie Curie (Paris VI), 1993.
  2. D. Anosov, On the additive functional homological equation associated with an irrational rotation of the circle, Izv. Akad. Nauk SSSR 37 (1973), 1259-1274 (in Russian).
  3. R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. 470, Springer, 1975.
  4. J. Brémont, Comportement des sommes ergodiques pour des rotations et des fonctions continues peu régulières, Publications des Séminaires de Rennes, 1999.
  5. J.-P. Conze, Equirépartition et ergodicité de transformations cylindriques, Publications des Séminaires de Rennes, 1976.
  6. J.-P. Conze et Y. Guivarc'h, Croissance des sommes ergodiques et principe va- riationnel, preprint, Rennes, 1997.
  7. M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math. 527, Springer, 1976.
  8. H. Federer, Geometric Measure Theory, Classics in Math., Springer, 1996.
  9. Y. Guivarc'h et J. Hardy, Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov, Ann. Inst. H. Poincaré Sér. Probab. Statist. 24 (1988), 73-98.
  10. G. Halász, Remarks on the remainder in Birkhoff's ergodic theorem, Acta Math. Acad. Sci. Hungar. 28 (1976), 389-395.
  11. M. R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. Inst. Hautes Etudes Sci. 49 (1979), 5-233.
  12. H. Kesten, M. V. Kozlov and F. Spitzer, A limit law for random walks in a random environment, Compositio Math. 30 (1975), 145-168.
  13. S. M. Kozlov, The method of averaging and walks in inhomogeneous environments, Russian Math. Surveys 40 (1985), no. 2, 73-145.
  14. S. M. Kozlov and S. A. Molchanov, On conditions for applicability of the central limit theorem to random walks on a lattice, Soviet Math. Dokl. 30 (1984), 410-413.
  15. M. A. Krasnosel'skiĭ, Positive Solutions of Operator Equations, Noordhoff, Gro- ningen, 1964.
  16. U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.
  17. A. V. Letchikov, A criterion for applicability of the CLT to one-dimensional random walks in random environments, Theory Probab. Appl. 37 (1992), 553-557.
  18. W. de Melo and S. van Strien, One-Dimensional Dynamics, Ergeb. Math. Grenzgeb. 25, Springer, 1993.
  19. S. A. Molchanov, Lectures on random media, in: Lectures on Probability Theory (Saint-Flour, 1992), Lecture Notes in Math. 1581, Springer, 1994, 242-411.
  20. M. F. Norman, Markov Processes and Learning Models, Academic Press, New York, 1972.
  21. Y. Peres, A combinatorial application of the maximal ergodic theorem, Bull. London Math. Soc. 20 (1988), 248-252.
  22. Ya. G. Sinai, Construction of Markov partitions, Funktsional. Anal. i Prilozhen. 2 (1968), no. 3, 70-80 (in Russian).
  23. Ya. G. Sinai, The limiting behaviour of a one-dimensional random walk in a random environment, Theory Probab. Appl. 27 (1982), 256-268.
  24. Ya. G. Sinai, Simple random walks on tori, preprint.
  25. R. Sine, On invariant probabilities for random rotations, Israel J. Math. 33 (1979), 384-388.
  26. F. Solomon, Random walks in a random environment, Ann. Probab. 3 (1975), 1-31.
Pages:
457-480
Main language of publication
French
Received
1999-09-02
Accepted
2000-01-06
Published
2000
Exact and natural sciences