ArticleOriginal scientific text

Title

Residuality of dynamical morphisms

Authors 1, 2, 3

Affiliations

  1. Department of Mathematics, Oregon State University, Corvallis, OR 97331-4665 U.S.A.
  2. Centre for Mathematics and Computer Science (CWI), Post Office Box 94079, 1090 GB Amsterdam, The Netherlands
  3. Institute of Mathematics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

Abstract

We present a unified approach to the finite generator theorem of Krieger, the homomorphism theorem of Sinai and the isomorphism theorem of Ornstein. We show that in a suitable space of measures those measures which define isomorphisms or respectively homomorphisms form residual subsets.

Bibliography

  1. P. Billingsley, Ergodic Theory and Information, Wiley, New York, 1965.
  2. R. Burton and A. Rothstein, Isomorphism theorems in ergodic theory, Technical Report, Oregon State Univ., 1977.
  3. H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, Princeton, NJ, 1981.
  4. P. Halmos and H. Vaughan, The Marriage Problem, Amer. J. Math.72 (1950), 214-215.
  5. K. Jacobs, Lecture Notes on Ergodic Theory, Aarhus Univ., 1962.
  6. J. Kammeyer, The isomorphism theorem for relatively finitely determined n-actions, Israel J. Math.69 (1990), 117-127.
  7. M. Keane and J. Serafin, On the countable generator theorem, Fund. Math.157 (1998), 255-259.
  8. M. Keane and M. Smorodinsky, Bernoulli schemes of the same entropy are finitarily isomorphic, Ann. of Math.109 (1979), 397-406.
  9. W. Krieger, On entropy and generators of measure-% preserving transformations, Trans. Amer. Math. Soc.149 (1970), 453-464.
  10. V. A. Rokhlin, Lectures on the entropy theory of measure-preserving transformations, Russian Math. Surveys22 (1967), no. 5, 1-52.
  11. D. Ornstein, Bernoulli shifts with the same entropy are isomorphic, Adv. Math.4 (1970), 337-352.
  12. D. Ornstein, Ergodic Theory, Randomness and Dynamical Systems, Yale Univ. Press, New Haven, 1974.
  13. J. Serafin, Finitary codes and isomorphisms, Ph.D. Thesis, Technische Universiteit Delft, 1996.
  14. Ya. Sinai, A weak isomorphism of transformations with an invariant measure, Dokl. Akad. Nauk SSSR 147 (1962), 797-800 (in Russian).
  15. P. Walters, An Introduction to Ergodic Theory, Springer, 1982.
Pages:
307-317
Main language of publication
English
Received
1999-08-03
Accepted
1999-12-01
Published
2000
Exact and natural sciences