ArticleOriginal scientific text
Title
Residuality of dynamical morphisms
Authors 1, 2, 3
Affiliations
- Department of Mathematics, Oregon State University, Corvallis, OR 97331-4665 U.S.A.
- Centre for Mathematics and Computer Science (CWI), Post Office Box 94079, 1090 GB Amsterdam, The Netherlands
- Institute of Mathematics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Abstract
We present a unified approach to the finite generator theorem of Krieger, the homomorphism theorem of Sinai and the isomorphism theorem of Ornstein. We show that in a suitable space of measures those measures which define isomorphisms or respectively homomorphisms form residual subsets.
Bibliography
- P. Billingsley, Ergodic Theory and Information, Wiley, New York, 1965.
- R. Burton and A. Rothstein, Isomorphism theorems in ergodic theory, Technical Report, Oregon State Univ., 1977.
- H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, Princeton, NJ, 1981.
- P. Halmos and H. Vaughan, The Marriage Problem, Amer. J. Math.72 (1950), 214-215.
- K. Jacobs, Lecture Notes on Ergodic Theory, Aarhus Univ., 1962.
- J. Kammeyer, The isomorphism theorem for relatively finitely determined
-actions, Israel J. Math.69 (1990), 117-127. - M. Keane and J. Serafin, On the countable generator theorem, Fund. Math.157 (1998), 255-259.
- M. Keane and M. Smorodinsky, Bernoulli schemes of the same entropy are finitarily isomorphic, Ann. of Math.109 (1979), 397-406.
- W. Krieger, On entropy and generators of measure-% preserving transformations, Trans. Amer. Math. Soc.149 (1970), 453-464.
- V. A. Rokhlin, Lectures on the entropy theory of measure-preserving transformations, Russian Math. Surveys22 (1967), no. 5, 1-52.
- D. Ornstein, Bernoulli shifts with the same entropy are isomorphic, Adv. Math.4 (1970), 337-352.
- D. Ornstein, Ergodic Theory, Randomness and Dynamical Systems, Yale Univ. Press, New Haven, 1974.
- J. Serafin, Finitary codes and isomorphisms, Ph.D. Thesis, Technische Universiteit Delft, 1996.
- Ya. Sinai, A weak isomorphism of transformations with an invariant measure, Dokl. Akad. Nauk SSSR 147 (1962), 797-800 (in Russian).
- P. Walters, An Introduction to Ergodic Theory, Springer, 1982.