Czasopismo
---
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
The purpose of this paper is to show that if σ is the maximal spectral type of Chacon's transformation, then for any d ≠ d' we have $σ^{*d} ⊥ σ^{*d'}$. First, we establish the disjointness of convolutions of the maximal spectral type for the class of dynamical systems that satisfy a certain algebraic condition. Then we show that Chacon's automorphism belongs to this class.
Słowa kluczowe
Czasopismo
---
Rocznik
Tom
Numer
Strony
67-74
Opis fizyczny
Daty
wydano
2000
otrzymano
1999-05-10
poprawiono
2000-02-11
Twórcy
autor
- Department of Mathematics, Moscow State University, 119899 Moscow, Russia
autor
- Department of Mathematics, Moscow State University, 119899 Moscow, Russia
Bibliografia
- [1] S. Ferenczi, Systems of finite rank, Colloq. Math. 73 (1997), 35-65.
- [2] G. Goodson, A survey of recent results in the spectral theory of ergodic dynamical systems, J. Dynam. Control Systems 5 (1999), 173-226.
- [3] A. del Junco and M. Lemańczyk, Generic spectral properties of measure preserving maps and applications, Proc. Amer. Math. Soc., 115 (1992), 725-736.
- [4] A. del Junco, A. M. Rahe and L. Swanson, Chacon's automorphism has minimal self-joinings, J. Anal. Math. 37 (1980), 276-284.
- [5] A. B. Katok, Constructions in Ergodic Theory, unpublished lecture notes.
- [6] O V. I. Oseledec, An automorphism with simple and continuous spectrum not having the group property, Math. Notes 5 (1969), 196-198.
- [7] A. M. Stepin, On properties of spectra of ergodic dynamical systems with locally compact time, Dokl. Akad. Nauk SSR 169 (1966), 773-776 (in Russian).
- [8] A. M. Stepin, Spectral properties of generic dynamical systems, Math. USSR-Izv. 29 (1987), 159-192.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv84i1p67bwm