ArticleOriginal scientific text

Title

Sur l'absence de mélange pour des flots spéciaux au-dessus d'une rotation irrationnelle

Authors 1

Affiliations

  1. Département de Mathématiques et d'Informatique, Université Nicolas Copernic, 12/18 rue Chopin, 87-100 Toruń, Pologne

Abstract

We prove the absence of mixing for special flows built over (1) an irrational rotation and under a function whose Fourier coefficients are of order O(1/|n|), and (2) an irrational rotation (satisfying a diophantine condition) and under a function having a finite number of singularities of a logarithmic type. These results generalize two theorems of Kochergin.

Bibliography

  1. J. Aaronson, An Introduction to Infinite Ergodic Theory, Math. Surveys Monogr. 50, Amer. Math. Soc., Providence, 1997.
  2. J. Aaronson, M. Lemańczyk, C. Mauduit and H. Nakada, Koksma's inequality and group extensions of Kronecker transformations, in: Algorithms, Fractals and Dynamics, Y. Takahashi (ed.), Plenum Press, 1995, 27-50.
  3. I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, New York, 1982.
  4. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon, Oxford, 1960.
  5. K. M. Khanin and Ya. G. Sinai, Mixing of some classes of special flows over a circle rotation, Funktsional. Anal. i Prilozhen. 26 (1992), no. 3, 1-21 (in Russian).
  6. A. Ya. Khintchin, Continued Fractions, Univ. of Chicago Press, 1960.
  7. A. V. Kočergin [A. V. Kochergin], On the absence of mixing in special flows over the rotation of a circle and in flows on a two-dimensional torus, Dokl. Akad. Nauk SSSR 205 (1972), 515-518 (in Russian); English transl.: Soviet Math. Dokl. 13 (1972), 949-952.
  8. A. V. Kočergin [A. V. Kochergin], Time change for flows and mixing, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 1275-1298 (in Russian).
  9. A. V. Kočergin [A. V. Kochergin], On the mixing of special flows over interval exchange maps and in smooth flows on surfaces, Mat. Sb. 96 (1975), 471-502 (in Russian).
  10. A. V. Kočergin [A. V. Kochergin], Nonsingular saddle points and the absence of mixing, Mat. Zametki 19 (1976), 453-468 (in Russian); English transl.: Math. Notes 19 (1976), 277-286.
  11. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, 1974.
  12. M. Lemańczyk and C. Mauduit, Ergodicity of a class of cocycles over irrational rotations, J. London Math. Soc. 49 (1994), 124-132.
  13. M. Lemańczyk, F. Parreau and D. Volný, Ergodic properties of real cocycles and pseudo-homogeneous Banach spaces, Trans. Amer. Math. Soc. 348 (1996), 4919-4938.
  14. V. V. Ryzhikov, The absence of mixing in special flows over rearrangements of segments, Math. Notes 55 (1994), 648-650.
  15. K. Schmidt, Cocycles of Ergodic Transformation Groups, Lecture Notes in Math. 1, Mac Millan of India, 1977.
Pages:
29-41
Main language of publication
French
Received
1999-04-12
Accepted
1999-12-15
Published
2000
Exact and natural sciences