Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
For invertible transformations we introduce various notions of topological entropy. For compact invariant sets these notions are all the same and equal the usual topological entropy. We show that for non-invariant sets these notions are different. They can be used to detect the direction in time in which the system evolves to highest complexity.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
265-278
Opis fizyczny
Daty
wydano
2000
otrzymano
1999-08-02
poprawiono
1999-12-18
Twórcy
autor
- FB Mathematik und Informatik, Freie Universität Berlin, Arnimallee 2-6, D-14195 Berlin, Germany
Bibliografia
- [1] L. Barreira and J. Schmeling, Sets of 'non-typical' points have full topological entropy and full Hausdorff dimension, Israel J. Math., to appear.
- [2] R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc. 184 (1973), 125-136.
- [3] Ya. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications, Chicago Lectures in Math., The Univ. of Chicago Press, 1997.
- [4] Ya. Pesin and B. Pitskel', Topological pressure and the variational principle for noncompact sets, Functional Anal. Appl. 18 (1984), no. 4, 307-318.
- [5] C. Rogers, Hausdorff Measures, Cambridge Univ. Press, 1970.
- [6] J. Schmeling, Entropy preservation under Markov coding, DANSE-preprint 6/99.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv84i1p265bwm