ArticleOriginal scientific text

Title

Strong and weak stability of some Markov operators

Authors 1

Affiliations

  1. Institute of Mathematics, Polish Academy of Sciences, Bankowa 14, 40-007 Katowice, Poland

Abstract

An integral Markov operator P appearing in biomathematics is investigated. This operator acts on the space of probabilistic Borel measures. Let μ and ν be probabilistic Borel measures. Sufficient conditions for weak and strong convergence of the sequence (Pnμ-Pnν) to 0 are given.

Keywords

biomathematics, weak and strong convergence of measures, Markov operators

Bibliography

  1. M. F. Barnsley, Fractals Everywhere, Acad. Press, New York, 1988.
  2. K. Baron and A. Lasota, Asymptotic properties of Markov operators defined by Volterra type integrals, Ann. Polon. Math. 58 (1993), 161-175.
  3. C. J. K. Batty, Z. Brzeźniak and D. A. Greenfield, A quantitative asymptotic theorem for contraction semigroups with countable unitary spectrum, Studia Math. 121 (1996), 167-183.
  4. S. R. Foguel, The Ergodic Theory of Markov Processes, Van Nostrand Reinhold, New York, 1969.
  5. S. R. Foguel, Harris operators, Israel J. Math. 33 (1979), 281-309.
  6. H. Gacki and A. Lasota, Markov operators defined by Volterra type integrals with advanced argument, Ann. Polon. Math. 51 (1990), 155-166.
  7. A. Iwanik, Baire category of mixing for stochastic operators, Rend. Circ. Mat. Palermo (2) Suppl. 28 (1992), 201-217.
  8. T. Komorowski and J. Tyrcha, Asymptotic properties of some Markov operators, Bull. Polish Acad. Sci. Math. 37 (1989), 221-228.
  9. A. Lasota and M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, Appl. Math. Sci. 97, Springer, New York, 1994.
  10. A. Lasota and M. C. Mackey, Global asymptotic properties of proliferating cell populations, J. Math. Biol. 19 (1984), 43-62.
  11. A. Lasota, M. C. Mackey and J. Tyrcha, The statistical dynamics of recurrent biological events, ibid. 30 (1992), 775-800.
  12. M. Lin, Mixing for Markov operators, Z. Wahrsch. Verw. Gebiete 19 (1971), 231-242.
  13. K. Łoskot and R. Rudnicki, Sweeping of some integral operators, Bull. Polish Acad. Sci. Math. 37 (1989), 229-235.
  14. J. van Neerven, The Asymptotic Behaviour of a Semigroup of Linear Operators, Birkhäuser, Basel, 1996.
  15. E. Nummelin, General Irreducible Markov Chains and Non-Negative Operators, Cambridge Tracts in Math. 83, Cambridge Univ. Press, Cambridge, 1984.
  16. R. Rudnicki, Stability in L1 of some integral operators, Integral Equations Operator Theory 24 (1996), 320-327.
  17. R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Polish Acad. Sci. Math. 43 (1995), 245-262.
  18. J. Tyrcha, Asymptotic stability in a generalized probabilistic/deterministic model of the cell cycle, J. Math. Biol. 26 (1988), 465-475.
  19. J. J. Tyson, Mini review: Size control of cell division, J. Theoret. Biol. 120 (1987), 381-391.
  20. J. J. Tyson and K. B. Hannsgen, Global asymptotic stability of the size distribution in probabilistic models of the cell cycle, J. Math. Biol. 22 (1985), 61-68.
  21. J. J. Tyson and K. B. Hannsgen, Cell growth and division: A deterministic/probabilistic model of the cell cycle, ibid. 23 (1986), 231-246.
Pages:
255-263
Main language of publication
English
Received
1999-07-27
Accepted
2000-01-14
Published
2000
Exact and natural sciences