PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 84/85 | 1 | 235-243
Tytuł artykułu

An exotic flow on a compact surface

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In 1988 Anosov [1] published the construction of an example of a flow (continuous real action) on a cylinder or annulus with a phase portrait strikingly different from our normal experience. It contains orbits whose $οmega$-limit sets contain a non-periodic orbit along with a simple closed curve of fixed points, but these orbits do not wrap down on this simple closed curve in the usual way. In this paper we modify some of Anosov's methods to construct a flow on a surface of genus $2$ with equally striking behavior that does not occur on a surface of genus $1$ or a cylinder. Moreover, our construction is relatively simple and can easily be modified to produce a variety of examples exhibiting similar types of behavior. The key idea that we use from Anosov's paper can be described in the following way. A flow on a cylinder can always be slowed down near one of the boundary circles so that it becomes fixed. If you slow a flow down very rapidly as you approach a bounding circle, then you can also spin the orbits further and further around the axis of the cylinder as you approach the boundary without destroying the flow. In particular, the boundary circle remains fixed, but orbits that approach even a single point on it now spiral toward it.
Słowa kluczowe
Rocznik
Tom
Numer
1
Strony
235-243
Opis fizyczny
Daty
wydano
2000
otrzymano
1999-07-15
poprawiono
1999-12-15
Twórcy
  • Lehigh University, 27 Memorial Dr. W, Bethlehem, PA 18015, U.S.A.
  • Mathematics Department, Concordia College, 901 8th St. S, Moorhead, MN 56562, U.S.A.
Bibliografia
  • [1] D. V. Anosov, On the behavior in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces. I, Math. USSR-Izv. 30 (1988), 15-38.
  • [2] S. H. Aranson and V. Z. Grines, On some invariants of dynamical systems on two-dimensional manifolds (necessary and sufficient conditions for the topological equivalence of transitive dynamical systems), Math. USSR-Sb. 19 (1973), 365-393.
  • [3] E. Lima, Common singularities of commuting vector fields on 2-manifolds, Comment. Math. Helv. 39 (1964), 97-110.
  • [4] N. G. Markley, Invariant simple closed curves on the torus, Michigan Math. J. 25 (1978), 45-52.
  • [5] M. H. Vanderschoot, Limit sets for continuous flows on surfaces, Ph.D. thesis, Univ. of Maryland, College Park, 1999.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv84i1p235bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.