ArticleOriginal scientific text
Title
A note on dynamical zeta functions for S-unimodal maps
Authors 1
Affiliations
- Mathematisches Institut, Universität Erlangen-Nürnberg, Bismarckstr. 1 1/2, D-91054 Erlangen, Germany
Abstract
Let f be a nonrenormalizable S-unimodal map. We prove that f is a Collet-Eckmann map if its dynamical zeta function looks like that of a uniformly hyperbolic map.
Keywords
dynamical zeta function, Collet-Eckmann map
Bibliography
- V. Baladi and G. Keller, Zeta-functions and transfer operators for piecewise monotone transformations, Comm. Math. Phys. 127 (1990), 459-478.
- V. Baladi, Periodic orbits and dynamical spectra, Ergodic Theory Dynam. Systems 18 (1998), 255-292.
- H. Bruin and G. Keller, Equilibrium states for S-unimodal maps, ibid. 18 (1998), 765-789.
- G. Keller and T. Nowicki, Fibonacci maps re(al)visited, ibid. 15 (1995), 99-120.
- W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, 1993.
- T. Nowicki and D. Sands, Non-uniform hyperbolicity and universal bounds for S-unimodal maps, Invent. Math. 132 (1998), 633-680.
- Y. Oono and Y. Takahashi, Chaos, external noise and Fredholm theory, Progr. Theor. Phys. 63 (1980), 1804-1807.
- R. Remmert, Theory of Complex Functions, Grad. Texts in Math. 122, Springer, New York, 1991.
- D. Ruelle, Analytic completion for dynamical zeta functions, Helv. Phys. Acta 66 (1993), 181-191.
- Y. Takahashi, An ergodic-theoretical approach to the chaotic behaviour of dynamical systems, Publ. R.I.M.S. Kyoto Univ. 19 (1983), 1265-1282.