ArticleOriginal scientific text
Title
Symmetric cocycles and classical exponential sums
Authors 1
Affiliations
- Department of Mathematics, National University of Ireland, Cork, Republic of Ireland
Abstract
This paper considers certain classical exponential sums as examples of cocycles with additional symmetries. Thus we simplify the proof of a result of Anderson and Pitt concerning the density of lacunary exponential partial sums , n=1,2,..., for fixed integer m ≥ 2. Also, with the help of Hardy and Littlewood's approximate functional equation, but otherwise by elementary considerations, we improve a previous result of the author for certain examples of Weyl sum: if θ ∈ [0,1] \ ℚ has continued fraction representation such that , and infinitely often for some ε \sum_{k=0}^n exp(2πi(k^{2}θ + 2kx))!$!, n=1,2,..., are dense in ℂ.
Bibliography
- [AP1] J. M. Anderson and L. D. Pitt, On recurrence properties of certain lacunary series I, J. Reine Angew. Math. 377 (1987), 65-82.
- [AP2] J. M. Anderson and L. D. Pitt, On recurrence properties of certain lacunary series II, ibid., 83-96.
- [At1] G. Atkinson, Non-compact extensions of transformations, Ph.D. Thesis, Univ. of Warwick, 1976.
- [At2] G. Atkinson, Recurrence of cocycles and random walks, J. London Math. Soc. (2) 13 (1976), 486-488.
- [At3] G. Atkinson, A class of transitive cylinder transformations, ibid. 17 (1978), 263-270.
- [Bi] P. Billingsley, Ergodic Theory and Information, Wiley Ser. Probab. Math. Statist., Wiley, New York, 1965.
- [Co] Z. Coelho, On the asymptotic range of cocycles for shifts of finite type, Ergodic Theory Dynam. Systems 13 (1993), 249-262.
- [D] F. M. Dekking, On transience and recurrence of generalised random walks, Z. Wahrsch. Verw. Gebiete 61 (1982), 459-465.
- [GM-F] F. M. Dekking and M. Mendès-France, Uniform distribution modulo one: a geometrical viewpoint, J. Reine Angew. Math. 329 (1981), 143-153.
- [FM] J. Feldman and C. Moore, Ergodic equivalence relations, cohomology and von Neumann algebras I, Trans. Amer. Math. Soc. 234 (1977), 289-324.
- [Fo] A. H. Forrest, The limit points of Weyl sums and other continuous cocycles, J. London Math. Soc. (2) 54 (1996), 440-452.
- [F] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, 1981.
- [G] Y. Guivarc'h, Propriétés ergodiques, en mesure infini, de certains systèmes dynamiques fibrés, Ergodic Theory Dynam. Systems 9 (1989), 433-453.
- [HL] G. H. Hardy and J. E. Littlewood, The trigonometric series associated with the elliptic
-functions, Acta Math. 37 (1914), 193-239. - [HW] G. H. Hardy and E. M. Wright, Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1979.
- [He] G. A. Hedlund, A class of transformations of the plane, Proc. Cambridge Philos. Soc. 51 (1955), 554-564.
- [I] A. Iwanik, Ergodicity for piecewise smooth cocycles over toral rotations, Fund. Math. 157 (1998), 235-244.
- [Kh] A. Ya. Khintchine, Continued Fractions, Noordhoff, Groningen, 1963.
- [Kre] W. Krieger, On the finitary isomorphisms of Markov shifts that have finite expected coding time, Z. Wahrsch. Verw. Gebiete 65 (1983), 323-328.
- [Kry] A. B. Krygin, An example of a cylindrical cascade with anomalous metric properties, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 30 (1975), no. 5, 26-32 (in Russian).
- [KN] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974.
- [Liv] A. N. Livšic, Cohomology of dynamical systems, Math. USSR-Izv. 6 (1972), 1278-1301.
- [LM] M. Lemańczyk and M. K. Mentzen, Topological ergodicity of real cocycles over minimal rotations, preprint, April 1999.
- [LPV] M. Lemańczyk, F. Parreau and D. Volný, Ergodic properties of real cocycles and pseudo-homogeneous Banach spaces, Trans. Amer. Math. Soc. 348 (1996), 4919-4938.
- [M] H. L. Montgomery, Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, CBMS Regional Conf. Ser. in Math. 84, Amer. Math. Soc., Providence, RI, 1994.
- [N] M. B. Nathanson, Additive Number Theory - The Classical Bases, Grad. Texts in Math. 164, Springer, New York, 1996.
- [PS] W. Parry and K. Schmidt, Coboundaries and homomorphisms for nonsingular actions and a problem of H. Helson, Invent. Math. 76 (1984), 15-32.
- [Pa] D. A. Pask, Skew products over the irrational rotation, Israel J. Math. 69 (1990), 65-74.
- [Pu] L. D. Pustyl'nikov, New estimates of Weyl sums and the remainder term in the law of distribution of the fractional part of a polynomial, Ergodic Theory Dynam. Systems 11 (1991), 515-534.
- [Sch1] K. Schmidt, Cocycles of Ergodic Transformation Groups, Lecture Notes in Math. 1, MacMillan of India, 1977.
- [Sch2] K. Schmidt, Hyperbolic structure preserving isomorphisms of Markov shifts, Israel J. Math. 55 (1986) 213-228.
- [Schw] F. Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory, Clarendon Press, Oxford, 1995.
- [Va] R. C. Vaughan, The Hardy-Littlewood Method, Cambridge Tract 80, Cambridge Univ. Press, 1981.
- [Vin] I. M. Vinogradov, The Method of Exponential Sums in the Theory of Numbers, Nauka, Moscow, 1971 (in Russian).
- [W] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313-352.