ArticleOriginal scientific text
Title
Properties of G-atoms and full Galois covering reduction to stabilizers
Authors 1
Affiliations
- Faculty of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
Abstract
Given a group G of k-linear automorphisms of a locally bounded k-category R it is proved that the endomorphism algebra of a G-atom B is a local semiprimary ring (Theorem 2.9); consequently, the injective -module is indecomposable (Corollary 3.1) and the socle of the tensor product functor is simple (Theorem 4.4). The problem when the Galois covering reduction to stabilizers with respect to a set U of periodic G-atoms (defined by the functors and )is full (resp. strictly full) is studied (see Theorems A, B and 6.3).
Keywords
Galois covering, tame, locally finite-dimensional module
Bibliography
- I. Bucur and A. Deleanu, Introduction to the Theory of Categories and Functors, Wiley, 1968.
- K. Bongartz and P. Gabriel, Covering spaces in representationtheory, Invent. Math. 65 (1982), 331-378.
- P. Dowbor, On modules of the second kind for Galoiscoverings, Fund. Math. 149 (1996), 31-54.
- P. Dowbor, Galois covering reduction to stabilizers, Bull. Polish Acad. Sci. Math. 44 (1996), 341-352.
- P. Dowbor, The pure projective ideal of amodule category, Colloq. Math. 71 (1996), 203-214.
- P. Dowbor, On stabilizers ofG-atoms of representation-tame categories, Bull. Polish Acad. Sci. Math. 46 (1998), 304-315.
- P. Dowbor and S. Kasjan, Galois covering technique andnon-simply connected posets of polynomial growth, J. Pure Appl. Algebra, to appear.
- P. Dowbor, H. Lenzing and A. Skowroński, Galois coveringsof algebras by locally support-finite categories, in: Lecture Notes in Math. 1177, Springer, 1986, 91-93.
- P. Dowbor and A. Skowroński, On Galois coveringsof tame algebras, Arch. Math. (Basel) 44 (1985), 522-529.
- P. Dowbor and A. Skowroński, Galois coverings ofrepresentation-infinite algebras, Comment. Math. Helv. 62 (1987), 311-337.
- Yu. A. Drozd, S. A. Ovsienko and B. Yu. Furchin, Categorical construction in representation theory, in:Algebraic Structures and their Applications, University of Kiev, Kiev UMK VO, 1988, 43-73 (in Russian).
- G P. Gabriel, The universal cover of a representation-finitealgebra, in: Lecture Notes in Math. 903, Springer, 1982, 68-105.
- C. Geiss and J. A. de la Pe na, An interesting family of algebras, Arch. Math. (Basel) 60 (1993), 25-35.
- E. L. Green, Group-graded algebras and the zero relation problem, in: Lecture Notes in Math. 903, Springer, 1982, 106-115.
- C. U. Jensen and H. Lenzing, Model Theoretic Algebra, Gordon and Breach, 1989.
- M B. Mitchell, Rings with several objects,Adv. Math. 8 (1972), 1-162.
- P Z. Pogorzały, Regularly biserial algebras, in: Topics in Algebra, Banach CenterPubl. 26, Part 2, PWN, Warszawa, 1990, 371-384.
- R C. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv. 55 (1980), 199-224.
- D. Simson, Socle reduction and socle projective modules,J. Algebra 108 (1986), 18-68.
- D. Simson, Representations of bounded stratified posets,coverings and socle projective modules, in: Topics in Algebra, Banach CenterPubl. 26, Part 2, PWN, Warszawa, 1990, 499-533.
- D. Simson, Right peak algebras of two-separate stratifiedposets, their Galois coverings and socle projective modules, Comm. Algebra 20 (1992), 3541-3591.
- D. Simson, On representation typesof module categories and orders, Bull. Polish Acad. Sci. Math. 41 (1993), 77-93.
- A. Skowroński, Selfinjective algebras of polynomialgrowth, Math. Ann. 285 (1989) 177-193.
- A. Skowroński, Criteria for polynomialgrowth of algebras, Bull. Polish Acad. Sci. Math. 42 (1994), 173-183.
- A. Skowroński, Tame algebras with strongly simply connectedGalois coverings, Colloq. Math. 72 (1997), 335-351.