ArticleOriginal scientific text

Title

Some remarks on Bochner-Riesz means

Authors 1

Affiliations

  1. Stat-Math Division, Indian Statistical Institute, 8th Mile, Mysore Road, Bangalore-560 059, India

Abstract

We study Lp norm convergence of Bochner-Riesz means SRδf associated with certain non-negative differential operators. When the kernel SRm(x,y) satisfies a weak estimate for large values of m we prove Lp norm convergence of SRδf for δ > n|1/p-1/2|, 1 < p < ∞, where n is the dimension of the underlying manifold.

Keywords

unitary representations, Schrödinger operators, Bochner-Riesz means, nilpotent groups, Rockland operators, Heisenberg group, summability

Bibliography

  1. A. Bonami et J. L. Clerc, Sommes de Cesàro et multiplicateurs des développements en harmoniques sphériques, Trans. Amer. Math. Soc. 183 (1973), 223-263.
  2. L. Carleson and P. Sjölin, Oscillatory integrals and multiplier problem for the disc, Studia Math. 44 (1972), 287-299.
  3. J. Dziubański, W. Hebisch and J. Zienkiewicz, Note on semigroups generated by positive Rockland operators on graded homogeneous groups, ibid. 110 (1994), 115-126.
  4. C. Fefferman, A note on spherical summation multipliers, Israel J. Math. 15 (1972), 44-52.
  5. G. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ., Princeton, 1982.
  6. W. Hebisch, Almost everywhere summability of eigenfunction expansions associated to elliptic operators, Studia Math. 96 (1990), 263-275.
  7. B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes à gauche sur un groupe nilpotent gradué, Comm. Partial Differential Equations 4 (1979), 899-958.
  8. L. Hörmander, On the Riesz means of spectral functions and eigenfunction expansions for elliptic differential operators, in: Some Recent Advances in the Basic Sciences, Vol. 2, Yeshiva Univ., New York, 1969, 155-202.
  9. A. Hulanicki, A functional calculus for Rockland operators on nilpotent Lie groups, Studia Math. 78 (1984), 253-266.
  10. A. Hulanicki and J. Jenkins, Almost everywhere summability on nilmanifolds, Trans. Amer. Math. Soc. 278 (1983), 703-715.
  11. A. Hulanicki and J. Jenkins, Nilpotent Lie groups and summability of eigenfunction expansions of Schrödinger operators, Studia Math. 80 (1984), 235-244.
  12. G. Karadzhov, Riesz summability of multiple Hermite series in Lp spaces, C. R. Acad. Bulgare Sci. 47 (1994), 5-8.
  13. C. E. Kenig, R. Stanton and P. Tomas, Divergence of eigenfunction expansions, J. Funct. Anal. 46 (1982), 28-44.
  14. G. Mauceri, Riesz means for the eigenfunction expansions for a class of hypoelliptic differential operators, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 4, 115-140.
  15. G. Mauceri and S. Meda, Vector valued multipliers on stratified groups, Rev. Mat. Iberoamericana 6 (1990), 141-154.
  16. B. S. Mitjagin [B. S. Mityagin], Divergenz von Spektralentwicklungen in Lp-Räumen, in: Linear Operators and Approximation II, Internat. Ser. Numer. Math. 25, Birkhäuser, Basel, 1974, 521-530.
  17. D. Müller and E. M. Stein, On spectral multipliers for Heisenberg and related groups, J. Math. Pures Appl. 73 (1994), 413-440.
  18. J. Peetre, Remarks on eigenfunction expansions for elliptic differential operators with constant coefficients, Math. Scand. 15 (1964), 83-97.
  19. J. Peetre, Some estimates for spectral functions, Math. Z. 92 (1966), 146-153.
  20. C. D. Sogge, Concerning the Lp norm of spectral clusters for second order elliptic operators on compact manifolds, J. Funct. Anal. 77 (1988), 123-134.
  21. C. D. Sogge, On the convergence of Riesz means on compact manifolds, Ann. of Math. 126 (1987), 439-447.
  22. E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1971.
  23. K. Stempak and J. Zienkiewicz, Twisted convolution and Riesz means, J. Anal. Math. 76 (1998), 93-107.
  24. S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Princeton Univ. Press, Princeton, 1993.
  25. S. Thangavelu, Hermite and special Hermite expansions revisited, Duke Math. J. 94 (1998), 257-278.
  26. S. Thangavelu, Harmonic Analysis on the Heisenberg Group, Progr. Math. 159, Birkhäuser, Boston, 1998
Pages:
217-230
Main language of publication
English
Received
1999-01-28
Accepted
1999-10-18
Published
2000
Exact and natural sciences