ArticleOriginal scientific text
Title
A geometric estimate for a periodic Schrödinger operator
Authors 1
Affiliations
- Institut für Mathematik, Humboldt-Universität zu Berlin, Rudower Chaussee 25, D-10099 Berlin, Germany
Abstract
We estimate from below by geometric data the eigenvalues of the periodic Sturm-Liouville operator with potential given by the curvature of a closed curve.
Keywords
spectrum, Fenchel inequality, Schrödinger operators, surfaces, Dirac operator
Bibliography
- I. Agricola and T. Friedrich, Upper bounds for the first eigenvalue of the Dirac operator on surfaces, J. Geom. Phys. 30 (1999), 1-22.
- C. Bär, Lower eigenvalues estimates for Dirac operators, Math. Ann. 293 (1992), 39-46.
- T. Friedrich, Der erste Eigenwert des Dirac-Operators einer kompakten Riemann- schen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr. 97 (1980), 117-146.
- T. Friedrich, Zur Abhängigkeit des Dirac-Operators von der Spin-Struktur, Colloq. Math. 48 (1984), 57-62.
- T. Friedrich, On the spinor representation of surfaces in Euclidean
-spaces, J. Geom. Phys. 28 (1998), 143-157. - J. Lott, Eigenvalue bounds for the Dirac operator, Pacific J. Math. 125 (1986), 117-128.
- U. Pinkall, Hopf tori in
, Invent. Math. 81 (1985), 379-386. - T. J. Willmore, Riemannian Geometry, Clarendon Press, Oxford, 1996.