ArticleOriginal scientific text

Title

A geometric estimate for a periodic Schrödinger operator

Authors 1

Affiliations

  1. Institut für Mathematik, Humboldt-Universität zu Berlin, Rudower Chaussee 25, D-10099 Berlin, Germany

Abstract

We estimate from below by geometric data the eigenvalues of the periodic Sturm-Liouville operator -4d2ds2+κ2(s) with potential given by the curvature of a closed curve.

Keywords

spectrum, Fenchel inequality, Schrödinger operators, surfaces, Dirac operator

Bibliography

  1. I. Agricola and T. Friedrich, Upper bounds for the first eigenvalue of the Dirac operator on surfaces, J. Geom. Phys. 30 (1999), 1-22.
  2. C. Bär, Lower eigenvalues estimates for Dirac operators, Math. Ann. 293 (1992), 39-46.
  3. T. Friedrich, Der erste Eigenwert des Dirac-Operators einer kompakten Riemann- schen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr. 97 (1980), 117-146.
  4. T. Friedrich, Zur Abhängigkeit des Dirac-Operators von der Spin-Struktur, Colloq. Math. 48 (1984), 57-62.
  5. T. Friedrich, On the spinor representation of surfaces in Euclidean 3-spaces, J. Geom. Phys. 28 (1998), 143-157.
  6. J. Lott, Eigenvalue bounds for the Dirac operator, Pacific J. Math. 125 (1986), 117-128.
  7. U. Pinkall, Hopf tori in S3, Invent. Math. 81 (1985), 379-386.
  8. T. J. Willmore, Riemannian Geometry, Clarendon Press, Oxford, 1996.
Pages:
209-216
Main language of publication
English
Received
1999-05-14
Accepted
1999-10-06
Published
2000
Exact and natural sciences