ArticleOriginal scientific text

Title

Interpolation sets for Fréchet measures

Authors 1

Affiliations

  1. Department of Computer Science and Mathematics Box 70, Arkansas State University State University, AR 72467, U.S.A.

Abstract

We introduce various classes of interpolation sets for Fréchet measures-the measure-theoretic analogues of bounded multilinear forms on products of C(K) spaces.

Bibliography

  1. [B1] R. C. Blei, Multi-dimensional extensions of the Grothendieck inequality and applications, Ark. Mat. 17 (1979), 51-68.
  2. [B2] R. C. Blei, Rosenthal sets that cannot be sup-norm partitioned and an application to tensor products, Colloq. Math. 37 (1977), 295-298.
  3. [B3] R. C. Blei, Fractional Cartesian products of sets, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 2, 79-105.
  4. [B4] R. C. Blei, Fractional dimensions and bounded fractional forms, Mem. Amer. Math. Soc. 331 (1985).
  5. [B5] R. C. Blei, Projectively bounded Fréchet measures, Trans. Amer. Math. Soc. 348 (1996), 4409-4432.
  6. [BS] R. C. Blei and J. Schmerl, Combinatorial dimension and fractional Cartesian products, Proc. Amer. Math. Soc. 120 (1994), 73-77.
  7. [CS] E. Christensen and A. M. Sinclair, Representations of completely bounded multilinear operators, J. Funct. Anal. 72 (1987), 151-181.
  8. [D] A. M. Davie, Quotient algebras of uniform algebras, J. London Math. Soc. 7 (1973), 31-40.
  9. [GMc] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Grundlehren Math. Wiss. 238, Springer, New York, 1979.
  10. [GS1] C. C. Graham and B. M. Schreiber, Bimeasure algebras on LCA groups, Pacific J. Math. 115 (1984), 91-127.
  11. [GS2] C. C. Graham and B. M. Schreiber, Sets of interpolation for Fourier transforms of bimeasures, Colloq. Math. 51 (1987), 149-154.
  12. [GS3] C. C. Graham and B. M. Schreiber, Projections in spaces of bimeasures, Canad. Math. Bull. 31 (1988), 19-25.
  13. [G] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. Sao Paulo 8 (1956), 1-79.
  14. [LP] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in p-spaces and their applications, Studia Math. 29 (1968), 275-326.
  15. [R] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227.
  16. [V] N. Th. Varopoulos, On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory, J. Funct. Anal. 16 (1974), 83-100.
  17. [Y] K. Ylinen, Noncommutative Fourier transforms of bounded bilinear forms and completely bounded multilinear operators, ibid. 79 (1988), 144-165.
  18. [ZS] G. Zhao and B. M. Schreiber, Algebras of multilinear forms on groups, in: Contemp. Math. 189, Amer. Math. Soc., 1995, 497-511.
Pages:
161-172
Main language of publication
English
Received
1998-11-06
Accepted
1999-04-06
Published
2000
Exact and natural sciences