ArticleOriginal scientific text

Title

Separation properties in congruence lattices of lattices

Authors 1

Affiliations

  1. Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, 04001 Košice, Slovakia

Abstract

We investigate the congruence lattices of lattices in the varieties n. Our approach is to represent congruences by open sets of suitable topological spaces. We introduce some special separation properties and show that for different n the lattices in n have different congruence lattices.

Bibliography

  1. D. Clark and B. A. Davey, Dualities for the Working Algebraist, Cambridge Univ. Press, 1998.
  2. B. A. Davey and H. Werner, Dualities and equivalences for varieties of algebras, in: Contributions to Lattice Theory, Colloq. Math. Soc. János Bolyai 33, North-Holland, 1983, 101-276.
  3. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, A Compendium of Continuous Lattices, Springer, 1980.
  4. G. Grätzer, General Lattice Theory, 2nd ed., Birkhäuser, 1998.
  5. A. Hajnal and A. Máté, Set mappings, partitions and chromatic numbers, in: Logic Colloquium '73, Stud. Logic Found. Math. 80, North-Holland, 1975, 347-379.
  6. J. L. Kelley, General Topology, Van Nostrand, 1955.
  7. K. Kuratowski, Sur une caractérisation des alephs, Fund. Math. 38 (1951), 14-17.
  8. R. McKenzie, R. McNulty and W. Taylor, Algebras, Lattices, Varieties I, Wadsworth & Brooks/Cole, 1987.
  9. M. Ploščica and J. Tůma, Uniform refinements in distributive semilattices, in: Contributions to General Algebra 10 (Klagenfurt '97), Verlag Johannes Heyn, 1998.
  10. M. Ploščica, J. Tůma and F. Wehrung, Congruence lattices of free lattices in nondistributive varieties, Colloq. Math. 76 (1998), 269-278.
  11. H. A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970), 186-190.
  12. M. H. Stone, Topological representation of distributive lattices and Brouwerian logics, Čas. Pěst. Mat. Fyz. 67 (1937), 1-25.
  13. F. Wehrung, Non-measurability properties of interpolation vector spaces, Israel J. Math. 103 (1998), 177-206.
  14. F. Wehrung, A uniform refinement property of certain congruence lattices, Proc. Amer. Math. Soc. 127 (1999), 363-370.
Pages:
71-84
Main language of publication
English
Received
1999-05-04
Accepted
1999-08-04
Published
2000
Exact and natural sciences