ArticleOriginal scientific text
Title
Separation properties in congruence lattices of lattices
Authors 1
Affiliations
- Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, 04001 Košice, Slovakia
Abstract
We investigate the congruence lattices of lattices in the varieties . Our approach is to represent congruences by open sets of suitable topological spaces. We introduce some special separation properties and show that for different n the lattices in have different congruence lattices.
Bibliography
- D. Clark and B. A. Davey, Dualities for the Working Algebraist, Cambridge Univ. Press, 1998.
- B. A. Davey and H. Werner, Dualities and equivalences for varieties of algebras, in: Contributions to Lattice Theory, Colloq. Math. Soc. János Bolyai 33, North-Holland, 1983, 101-276.
- G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, A Compendium of Continuous Lattices, Springer, 1980.
- G. Grätzer, General Lattice Theory, 2nd ed., Birkhäuser, 1998.
- A. Hajnal and A. Máté, Set mappings, partitions and chromatic numbers, in: Logic Colloquium '73, Stud. Logic Found. Math. 80, North-Holland, 1975, 347-379.
- J. L. Kelley, General Topology, Van Nostrand, 1955.
- K. Kuratowski, Sur une caractérisation des alephs, Fund. Math. 38 (1951), 14-17.
- R. McKenzie, R. McNulty and W. Taylor, Algebras, Lattices, Varieties I, Wadsworth & Brooks/Cole, 1987.
- M. Ploščica and J. Tůma, Uniform refinements in distributive semilattices, in: Contributions to General Algebra 10 (Klagenfurt '97), Verlag Johannes Heyn, 1998.
- M. Ploščica, J. Tůma and F. Wehrung, Congruence lattices of free lattices in nondistributive varieties, Colloq. Math. 76 (1998), 269-278.
- H. A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970), 186-190.
- M. H. Stone, Topological representation of distributive lattices and Brouwerian logics, Čas. Pěst. Mat. Fyz. 67 (1937), 1-25.
- F. Wehrung, Non-measurability properties of interpolation vector spaces, Israel J. Math. 103 (1998), 177-206.
- F. Wehrung, A uniform refinement property of certain congruence lattices, Proc. Amer. Math. Soc. 127 (1999), 363-370.