ArticleOriginal scientific text

Title

Quasitilted algebras have preprojective components

Authors 1

Affiliations

  1. Norwegian University of Science and Technology, Department of Mathematical Sciences, Lade, N-7491 Trondheim, Norway

Abstract

We show that a quasitilted algebra has a preprojective component. This is proved by giving an algorithmic criterion for the existence of preprojective components.

Bibliography

  1. M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras, Cambridge Univ. Press, 1995.
  2. B K. Bongartz, A criterion for finite representation type, Math. Ann. 269 (1984), 1-12.
  3. F. Coelho and D. Happel, Quasitilted algebras admit a preprojective component, Proc. Amer. Math. Soc. 125 (1997), 1283-1291.
  4. F. Coelho and A. Skowroński, On Auslander-Reiten components for quasitilted algebras, Fund. Math. 149 (1996), 67-82.
  5. P. Dräxler and J. A. de la Pe na, On the existence of postprojective components in the Auslander-Reiten quiver of an algebra, Tsukuba J. Math. 20 (1996), 457-469.
  6. O. Enge, I. H. Slungård and S. O. Smalο, Quasitilted extensions by nondirecting modules, preliminary manuscript, 1998.
  7. D. Happel, I. Reiten and S. O. Smalο, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996).
  8. D. Happel, I. Reiten and S. O. Smalο, Short cycles and sincere modules, in: CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 233-237.
  9. D. Happel and C. M. Ringel, Directing projective modules, Arch. Math. (Basel) 60 (1993), 237-246.
  10. A. Skowroński and M. Wenderlich, Artin algebras with directing indecomposable projective modules, J. Algebra 165 (1994), 507-530.
  11. H. Strauss, The perpendicular category of a partial tilting module, ibid. 144 (1991), 43-66.
Pages:
55-69
Main language of publication
English
Received
1999-04-28
Accepted
1999-08-04
Published
2000
Exact and natural sciences