ArticleOriginal scientific text
Title
Quasitilted algebras have preprojective components
Authors 1
Affiliations
- Norwegian University of Science and Technology, Department of Mathematical Sciences, Lade, N-7491 Trondheim, Norway
Abstract
We show that a quasitilted algebra has a preprojective component. This is proved by giving an algorithmic criterion for the existence of preprojective components.
Bibliography
- M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras, Cambridge Univ. Press, 1995.
- B K. Bongartz, A criterion for finite representation type, Math. Ann. 269 (1984), 1-12.
- F. Coelho and D. Happel, Quasitilted algebras admit a preprojective component, Proc. Amer. Math. Soc. 125 (1997), 1283-1291.
- F. Coelho and A. Skowroński, On Auslander-Reiten components for quasitilted algebras, Fund. Math. 149 (1996), 67-82.
- P. Dräxler and J. A. de la Pe na, On the existence of postprojective components in the Auslander-Reiten quiver of an algebra, Tsukuba J. Math. 20 (1996), 457-469.
- O. Enge, I. H. Slungård and S. O. Smalο, Quasitilted extensions by nondirecting modules, preliminary manuscript, 1998.
- D. Happel, I. Reiten and S. O. Smalο, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996).
- D. Happel, I. Reiten and S. O. Smalο, Short cycles and sincere modules, in: CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 233-237.
- D. Happel and C. M. Ringel, Directing projective modules, Arch. Math. (Basel) 60 (1993), 237-246.
- A. Skowroński and M. Wenderlich, Artin algebras with directing indecomposable projective modules, J. Algebra 165 (1994), 507-530.
- H. Strauss, The perpendicular category of a partial tilting module, ibid. 144 (1991), 43-66.