ArticleOriginal scientific text
Title
A general differentiation theorem for superadditive processes
Authors 1
Affiliations
- Department of Mathematics, Faculty of Science, Okayama University, Okayama, 700-8530 Japan
Abstract
Let L be a Banach lattice of real-valued measurable functions on a σ-finite measure space and T={ : t < 0} be a strongly continuous semigroup of positive linear operators on the Banach lattice L. Under some suitable norm conditions on L we prove a general differentiation theorem for superadditive processes in L with respect to the semigroup T.
Keywords
differentiation theorem, superadditive process, absolutely continuous norm, local ergodic theorem, semigroup of positive linear operators, Banach lattice of functions
Bibliography
- M. A. Akcoglu and M. Falkowitz, A general local ergodic theorem in
, Pacific J. Math. 119 (1985), 257-264. - M. A. Akcoglu and U. Krengel, A differentiation theorem for additive processes, Math. Z. 163 (1978), 199-210.
- M. A. Akcoglu and U. Krengel, A differentiation theorem in
, ibid. 169 (1979), 31-40. - R. Emilion, Additive and superadditive local theorems, Ann. Inst. H. Poincaré Probab. Statist. 22 (1986), 19-36.
- D. Feyel, Convergence locale des processus sur-abéliens et sur-additifs, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), 301-303.
- T. Kataoka, R. Sato and H. Suzuki, Differentiation of superadditive processes in
, Acta Math. Hungar. 49 (1987), 157-162. - U. Krengel, A local ergodic theorem, Invent. Math. 6 (1969), 329-333.
- U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.
- D. S. Ornstein, The sums of iterates of a positive operator, in: Advances in Probability and Related Topics, Vol. 2, Dekker, New York, 1970, 85-115.
- R. Sato, On local ergodic theorems for positive semigroups, Studia Math. 63 (1978), 45-55.
- H. Suzuki, On the two decompositions of a measure space by an operator semigroup, Math. J. Okayama Univ. 25 (1983), 87-90.
- N. Wiener, The ergodic theorem, Duke Math. J. 5 (1939), 1-18.