ArticleOriginal scientific text

Title

Directing components for quasitilted algebras

Authors 1

Affiliations

  1. Departamento de Matemática-IME, Universidade de São Paulo, CP 66281, São Paulo, SP, 05315-970, Brazil

Abstract

We show here that a directing component of the Auslander-Reiten quiver of a quasitilted algebra is either postprojective or preinjective or a connecting component.

Keywords

Auslander-Reiten quivers, quasitilted algebras

Bibliography

  1. M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras, Cambridge Univ. Press, 1995.
  2. S. Brenner and M. Butler, Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, in: Proc. ICRA II, Lecture Notes in Math. 832, Springer, 1980, 103-169.
  3. F. U. Coelho and D. Happel, Quasitilted algebras admit a preprojective component, Proc. Amer. Math. Soc. 125 (1997), 1283-1291.
  4. F. U. Coelho, Ma. I. R. Martins and J. A. de la Peña, Quasitilted extensions of algebras I, Proc. Amer. Math. Soc., to appear.
  5. F. U. Coelho, Ma. I. R. Martins and J. A. de la Peña, Quasitilted extensions of algebras II, J. Algebra, to appear.
  6. F. U. Coelho and A. Skowroński, On Auslander-Reiten components for quasitilted algebras, Fund. Math. 149 (1996), 67-82.
  7. P. Dräxler and J. A. de la Peña, On the existence of postprojective components in the Auslander-Reiten quiver of an algebra, Tsukuba J. Math. 20 (1996), 457-469.
  8. D. Happel, I. Reiten and S. Smalο, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996).
  9. D. Happel and C. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443.
  10. H. Lenzing and A. Skowroński, Quasi-tilted algebras of canonical type, Colloq. Math. 71 (1996), 161-181.
  11. S. Liu, The connected components of the Auslander-Reiten quiver of a tilted algebra, J. Algebra 61 (1993), 505-523.
  12. J. A. de la Peña and I. Reiten, Trisection of module categories, to appear.
  13. A. Skowroński, Tame quasi-tilted algebras, J. Algebra 203 (1998), 470-490.
Pages:
271-275
Main language of publication
English
Received
1999-03-22
Published
1999
Exact and natural sciences