ArticleOriginal scientific text

Title

Fejér means of two-dimensional Fourier transforms on Hp(×)

Authors 1

Affiliations

  1. Department of Numerical Analysis, Eötvös L. University, Pázmány P. sétány 1/D, H-1117 Budapest, Hungary

Abstract

The two-dimensional classical Hardy spaces Hp(×) are introduced and it is shown that the maximal operator of the Fejér means of a tempered distribution is bounded from Hp(×) to Lp(2) (1/2 < p ≤ ∞) and is of weak type (H#_1(×),L1(2)) where the Hardy space H#_1(×) is defined by the hybrid maximal function. As a consequence we deduce that the Fejér means of a function f ∈ H1#(×)LlogL(2) converge to f a.e. Moreover, we prove that the Fejér means are uniformly bounded on Hp(×) whenever 1/2 < p < ∞. Thus, in case f ∈ Hp(×), the Fejér means converge to f in Hp(×) norm (1/2 < p < ∞). The same results are proved for the conjugate Fejér means.

Keywords

p-atom, Hardy spaces, atomic decomposition, interpolation, Fejér means

Bibliography

  1. C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, New York, 1988.
  2. J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976.
  3. S.-Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and Hp-theory on product domains, Bull. Amer. Math. Soc. 12 (1985), 1-43.
  4. R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
  5. P. Duren, Theory of Hp Spaces, Academic Press, New York, 1970.
  6. R. E. Edwards, Fourier Series. A Modern Introduction, Vol. 2, Springer, Berlin, 1982.
  7. C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137-194.
  8. R. Fefferman, Calderón-Zygmund theory for product domains: Hp spaces, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 840-843.
  9. A. P. Frazier, The dual space of Hp of the polydisc for 0
  10. R. F. Gundy, Maximal function characterization of Hp for the bidisc, in: Lecture Notes in Math. 781, Springer, Berlin, 1982, 51-58.
  11. R. F. Gundy and E. M. Stein, Hp theory for the poly-disc, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), 1026-1029.
  12. K.-C. Lin, Interpolation between Hardy spaces on the bidisc, Studia Math. 84 (1986), 89-96.
  13. J. Marcinkiewicz and A. Zygmund, On the summability of double Fourier series, Fund. Math. 32 (1939), 122-132.
  14. F. Móricz, The maximal Fejér operator for Fourier transforms of functions in Hardy spaces, Acta Sci. Math. (Szeged) 62 (1996), 537-555.
  15. F. Weisz, Cesàro summability of one- and two-dimensional trigonometric-Fourier series, Colloq. Math. 74 (1997), 123-133.
  16. F. Weisz, Cesàro summability of two-parameter trigonometric-Fourier series, J. Approx. Theory 90 (1997), 30-45.
  17. F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994.
  18. F. Weisz, Strong summability of two-dimensional trigonometric-Fourier series, Ann. Univ. Sci. Budapest Sect. Comput. 16 (1996), 391-406.
  19. F. Weisz, The maximal Fejér operator of Fourier transforms, Acta Sci. Math. (Szeged) 64 (1998), 515-525.
  20. N. Wiener, The Fourier Integral and Certain of its Applications, Dover, New York, 1959.
  21. J. M. Wilson, On the atomic decomposition for Hardy spaces, Pacific J. Math. 116 (1985), 201-207.
  22. A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959.
Pages:
155-166
Main language of publication
English
Received
1998-06-17
Published
1999
Exact and natural sciences