ArticleOriginal scientific textFejér means of two-dimensional Fourier transforms on
Title
Fejér means of two-dimensional Fourier transforms on
Authors 1
Affiliations
- Department of Numerical Analysis, Eötvös L. University, Pázmány P. sétány 1/D, H-1117 Budapest, Hungary
Abstract
The two-dimensional classical Hardy spaces are introduced and it is shown that the maximal operator of the Fejér means of a tempered distribution is bounded from to (1/2 < p ≤ ∞) and is of weak type where the Hardy space is defined by the hybrid maximal function. As a consequence we deduce that the Fejér means of a function f ∈ ⊃ converge to f a.e. Moreover, we prove that the Fejér means are uniformly bounded on whenever 1/2 < p < ∞. Thus, in case f ∈ , the Fejér means converge to f in norm (1/2 < p < ∞). The same results are proved for the conjugate Fejér means.
Keywords
p-atom, Hardy spaces, atomic decomposition, interpolation, Fejér means
Bibliography
- C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, New York, 1988.
- J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976.
- S.-Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and
-theory on product domains, Bull. Amer. Math. Soc. 12 (1985), 1-43. - R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
- P. Duren, Theory of
Spaces, Academic Press, New York, 1970. - R. E. Edwards, Fourier Series. A Modern Introduction, Vol. 2, Springer, Berlin, 1982.
- C. Fefferman and E. M. Stein,
spaces of several variables, Acta Math. 129 (1972), 137-194. - R. Fefferman, Calderón-Zygmund theory for product domains:
spaces, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 840-843. - A. P. Frazier, The dual space of
of the polydisc for 0 - R. F. Gundy, Maximal function characterization of
for the bidisc, in: Lecture Notes in Math. 781, Springer, Berlin, 1982, 51-58. - R. F. Gundy and E. M. Stein,
theory for the poly-disc, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), 1026-1029. - K.-C. Lin, Interpolation between Hardy spaces on the bidisc, Studia Math. 84 (1986), 89-96.
- J. Marcinkiewicz and A. Zygmund, On the summability of double Fourier series, Fund. Math. 32 (1939), 122-132.
- F. Móricz, The maximal Fejér operator for Fourier transforms of functions in Hardy spaces, Acta Sci. Math. (Szeged) 62 (1996), 537-555.
- F. Weisz, Cesàro summability of one- and two-dimensional trigonometric-Fourier series, Colloq. Math. 74 (1997), 123-133.
- F. Weisz, Cesàro summability of two-parameter trigonometric-Fourier series, J. Approx. Theory 90 (1997), 30-45.
- F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994.
- F. Weisz, Strong summability of two-dimensional trigonometric-Fourier series, Ann. Univ. Sci. Budapest Sect. Comput. 16 (1996), 391-406.
- F. Weisz, The maximal Fejér operator of Fourier transforms, Acta Sci. Math. (Szeged) 64 (1998), 515-525.
- N. Wiener, The Fourier Integral and Certain of its Applications, Dover, New York, 1959.
- J. M. Wilson, On the atomic decomposition for Hardy spaces, Pacific J. Math. 116 (1985), 201-207.
- A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959.