ArticleOriginal scientific text

Title

Pieri-type formulas for maximal isotropic Grassmannians via triple intersections

Authors 1

Affiliations

  1. Department of Mathematics, University of Wisconsin, Van Vleck Hall, 480 Lincoln Drive, Madison, WI 53706-1388, U.S.A.

Abstract

We give an elementary proof of the Pieri-type formula in the cohomology ring of a Grassmannian of maximal isotropic subspaces of an orthogonal or symplectic vector space. This proof proceeds by explicitly computing a triple intersection of Schubert varieties. The multiplicities (which are powers of 2) in the Pieri-type formula are seen to arise from the intersection of a collection of quadrics with a linear space.

Bibliography

  1. N. Bergeron and F. Sottile, A Pieri-type formula for isotropic flag manifolds, math.CO/9810025, 1999.
  2. C. Chevalley, Sur les décompositions cellulaires des espaces G/B, in: Algebraic Groups and their Generalizations: Classical Methods, W. Haboush (ed.), Proc. Sympos. Pure Math. 56, Part 1, Amer. Math. Soc., 1994, 1-23.
  3. V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math. 79 (1985), 499-511.
  4. W. Fulton, Intersection Theory, Ergeb. Math. Greuzgeb. 2, Springer, 1984.
  5. W. Fulton, Young Tableaux, Cambridge Univ. Press, 1997.
  6. W. Fulton and P. Pragacz, Schubert Varieties and Degeneracy Loci, Lecture Notes in Math. 1689, Springer, 1998.
  7. P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, 1978.
  8. H. Hiller and B. Boe, Pieri formula for SO2n+1Un and SpnUn, Adv. Math. 62 (1986), 49-67.
  9. W. V. D. Hodge, The intersection formula for a Grassmannian variety, J. London Math. Soc. 17 (1942), 48-64.
  10. W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry, Vol. II, Cambridge Univ. Press, 1952.
  11. S. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287-297.
  12. P. Pragacz, Algebro-geometric applications of Schur S- and Q-polynomials, in: Topics in Invariant Theory, Lecture Notes in Math. 1478, Springer, 1991, 130-191.
  13. P. Pragacz and J. Ratajski, Pieri type formula for isotropic Grassmannians; the operator approach, Manuscripta Math. 79 (1993), 127-151.
  14. P. Pragacz and J. Ratajski, Pieri-type formula for Lagrangian and odd orthogonal Grassmannians, J. Reine Angew. Math. 476 (1996), 143-189.
  15. P. Pragacz and J. Ratajski, A Pieri-type theorem for even orthogonal Grassmannians, Max-Planck Institut preprint, 1996.
  16. S. Sertöz, A triple intersection theorem for the varieties SOnPd, Fund. Math. 142 (1993), 201-220.
  17. F. Sottile, Pieri's formula for flag manifolds and Schubert polynomials, Ann. Inst. Fourier (Grenoble) 46 (1996), 89-110.
Pages:
49-63
Main language of publication
English
Received
1999-03-19
Published
1999
Exact and natural sciences