ArticleOriginal scientific text

Title

Simply connected right multipeak algebras and the separation property

Authors 1

Affiliations

  1. Department of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

Abstract

Let R=k(Q,I) be a finite-dimensional algebra over a field k determined by a bound quiver (Q,I). We show that if R is a simply connected right multipeak algebra which is chord-free and w~-free in the sense defined below then R has the separation property and there exists a preprojective component of the Auslander-Reiten quiver of the category prin(R) of prinjective R-modules. As a consequence we get in 4.6 a criterion for finite representation type of prin(R) in terms of the prinjective Tits quadratic form of R.

Bibliography

  1. I. Assem and A. Skowroński, On some classes of simply connected algebras, Proc. London Math. Soc. 56 (1988), 417-450.
  2. R. Bautista, F. Larrión and L. Salmerón, On simply connected algebras, J. London Math. Soc. 27 (1983), 212-220.
  3. K. Bongartz, A criterion for finite representation type, Math. Ann. 269 (1984), 1-12.
  4. K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1982), 331-378.
  5. O. Bretscher and P. Gabriel, The standard form of a representation-finite algebra, Bull. Soc. Math. France 111 (1983), 21-40.
  6. P. Dräxler, Completely separating algebras, J. Algebra 165 (1994), 550-565.
  7. G E. L. Green, Group-graded algebras and the zero relation problem, in: Lecture Notes in Math. 903, Springer, Berlin, 1981, 106-115.
  8. H.-J. von Höhne and D. Simson, Bipartite posets of finite prinjective type, J. Algebra 201 (1998), 86-114.
  9. K S. Kasjan, Bound quivers of three-separate stratified posets, their Galois coverings and socle projective representations, Fund. Math. 143 (1993), 259-279.
  10. R. Martínez-Villa and J. A. de la Pe na, The universal cover of a quiver with relations, J. Pure. Appl. Algebra 30 (1983), 277-292.
  11. J. A. de la Pe na and D. Simson, Prinjective modules, reflection functors, quadratic forms and Auslander-Reiten sequences, Trans. Amer. Math. Soc. 329 (1992), 733-753.
  12. Z. Pogorzały, On star-free bound quivers, Bull. Polish Acad. Sci. Math. 37 (1989), 255-267.
  13. D. Simson, Socle reductions and socle projective modules, J. Algebra 103 (1986), 18-68.
  14. D. Simson, A splitting theorem for multipeak path algebras, Fund. Math. 138 (1991), 112-137.
  15. D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon & Breach, 1992.
  16. D. Simson, Right peak algebras of two-separate stratified posets, their Galois coverings and socle projective modules, Comm. Algebra 20 (1992), 3541-3591.
  17. D. Simson, Posets of finite prinjective type and a class of orders, J. Pure Appl. Algebra 90 (1993), 77-103.
  18. D. Simson, Three-partite subamalgams of tiled orders of finite lattice type, ibid. 138 (1999), 151-184.
  19. D. Simson, Representation types, Tits reduced quadratic forms and orbit problems for lattices over orders, in: Contemp. Math. 229, Amer. Math. Soc., 1998, 307-342.
  20. D. Simson, Three-partite subamalgams of tiled orders of polynomial growth, Colloq. Math. 82 (1999), in press.
  21. A. Skowroński, Simply connected algebras and Hochschild cohomologies, in: Proc. Sixth Internat. Conf. on Representations of Algebras, CMS Conf. Proc. 14, Amer. Math. Soc., 1992, 431-447.
  22. H. Spanier, Algebraic Topology, McGraw-Hill, 1966.
Pages:
137-153
Main language of publication
English
Received
1999-04-15
Accepted
1999-07-13
Published
1999
Exact and natural sciences