ArticleOriginal scientific text

Title

Fans are not c-determined

Authors 1

Affiliations

  1. Instituto de Matemáticas, Circuito Exterior, Cd. Universitaria México, 04510, México

Abstract

A continuum is a compact connected metric space. For a continuum X, let C(X) denote the hyperspace of subcontinua of X. In this paper we construct two nonhomeomorphic fans (dendroids with only one ramification point) X and Y such that C(X) and C(Y) are homeomorphic. This answers a question by Sam B. Nadler, Jr.

Keywords

C-determined, hyperspaces, fan, continuum

Bibliography

  1. G. Acosta, Hyperspaces with unique hyperspace, preprint.
  2. R. D. Anderson, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 126 (1967), 200-216.
  3. R. Duda, On the hyperspace of subcontinua of a finite graph, I, Fund. Math. 69 (1968), 265-286.
  4. C. Eberhart and S. B. Nadler, Jr., Hyperspaces of cones and fans, Proc. Amer. Math. Soc. 77 (1979), 279-288.
  5. A. Illanes, Chainable continua are not C-determined, Topology Appl., to appear.
  6. J. Krasinkiewicz, On the hyperspaces of snake-like and circle-like continua, Fund. Math. 83 (1974), 155-164.
  7. S. Macías, On C-determined continua, Glas. Mat., to appear.
  8. S. Macías, Hereditarily indecomposable continua have unique hyperspace 2X, preprint.
  9. S. B. Nadler, Jr., Hyperspaces of Sets, Monographs Textbooks Pure Appl. Math. 49, Marcel Dekker, New York, 1978.
  10. L. E. Ward, Extending Whitney maps, Pacific J. Math. 93 (1981), 465-469.
Pages:
299-308
Main language of publication
English
Received
1998-11-16
Accepted
1999-03-25
Published
1999
Exact and natural sciences