ArticleOriginal scientific text

Title

Wold decomposition of the Hardy space and Blaschke products similar to a contraction

Authors 1

Affiliations

  1. Department of Mathematics and Statistics, University at Albany, Albany, NY 12222, U.S.A.

Abstract

The classical Wold decomposition theorem applied to the multiplication by an inner function leads to a special decomposition of the Hardy space. In this paper we obtain norm estimates for componentwise projections associated with this decomposition. An application to operators similar to a contraction is given.

Bibliography

  1. P. R. Ahern and D. N. Clark, On inner functions with Bp derivatives, Michigan Math. J. 23 (1976), 393-396.
  2. A. B. Aleksandrov, Multiplicity of boundary values of inner functions, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 22 (1987), 490-503 (in Russian).
  3. A. B. Aleksandrov, Inner functions and related spaces of pseudocontinuable functions, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 170 (1989), 7-33 (in Russian); English transl.: J. Soviet Math. 63 (2) (1993).
  4. W. B. Arveson, Subalgebras of C-algebras, Acta Math. 123 (1969), 141-224.
  5. C. L. Belna, P. Colwell and G. Piranian, The radial limits of Blaschke products, Proc. Amer. Math. Soc. 93 (1985), 267-271.
  6. D. N. Clark, One dimensional perturbations of restricted shifts, J. Anal. Math. 25 (1972), 169-191.
  7. J. L. Doob, Measure Theory, Springer, New York, 1994.
  8. P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887-933.
  9. P. R. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math. 208 (1961), 102-112.
  10. T. L. Lance and M. I. Stessin, Multiplication invariant subspaces of Hardy spaces, Canad. J. Math. 49 (1997), 100-118.
  11. P. Lax, Translation invariant subspaces, Acta Math. 101 (1959), 163-178.
  12. V. Mascioni, Ideals of the disk algebra, operators related to Hilbert space contractions and complete boundedness, Houston J. Math. 20 (1994), 299-311.
  13. J. von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr. 4 (1950/51), 258-281.
  14. V. I. Paulsen, Every completely polynomially bounded operator is similar to a contraction, J. Funct. Anal. 55 (1984), 1-17.
  15. A. G. Poltoratski, The boundary behavior of pseudocontinuable functions, St. Petersburg Math. J. 5 (1994), 389-406.
  16. A. G. Poltoratski, On the distributions of the boundary values of Cauchy integrals, Proc. Amer. Math. Soc. 124 (1996), 2455-2463.
  17. W. Rudin, Boundary values of continuous analytic functions, ibid. 7 (1956), 808-811.
  18. W. Rudin, Function Theory in the Unit Ball of Cn, Springer, New York, 1980.
Pages:
271-284
Main language of publication
English
Received
1998-10-29
Accepted
1999-03-02
Published
1999
Exact and natural sciences