Download PDF - Invariants and flow geometry
ArticleOriginal scientific text
Title
Invariants and flow geometry
Authors 1, 2
Affiliations
- Departamento de Matemática Fundamental, Sección de Geometría y Topología, Universidad de La Laguna, La Laguna, Spain
- Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, 3001 Leuven, Belgium
Abstract
We continue the study of Riemannian manifolds (M,g) equipped with an isometric flow generated by a unit Killing vector field ξ. We derive some new results for normal and contact flows and use invariants with respect to the group of ξ-preserving isometries to charaterize special (M,g, ), in particular Einstein, η-Einstein, η-parallel and locally Killing-transversally symmetric spaces. Furthermore, we introduce curvature homogeneous flows and flow model spaces and derive an algebraic characterization of Killing-transversally symmetric spaces by using the curvature tensor of special flow model spaces. All these results extend the corresponding theory in Sasakian geometry to flow geometry.
Keywords
flow model spaces, normal, contact and curvature homogeneous flows, invariants and characterizations of special Riemannian manifolds, flows generated by a unit Killing vector field
Bibliography
- A. L. Besse, Einstein Manifolds, Ergeb. Math. Grenzgeb. (3) 10, Springer, Berlin, 1987.
- B D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer, Berlin, 1976.
- D. E. Blair and L. Vanhecke, Symmetries and φ-symmetric spaces, Tôhoku Math. J. 39 (1987), 373-383.
- E. Boeckx, O. Kowalski and L. Vanhecke, Riemannian Manifolds of Conullity Two, World Scientific, Singapore, 1996.
- P. Bueken, Reflections and rotations in contact geometry, doctoral dissertation, Katholieke Universiteit Leuven, 1992.
- P. Bueken and L. Vanhecke, Algebraic characterizations by means of the curvature in contact geometry, in: Proc. III Internat. Sympos. Diff. Geom., Pe níscola, Lecture Notes in Math. 1410, Springer, Berlin, 1988, 77-86.
- P. Bueken and L. Vanhecke, Curvature characterizations in contact geometry, Riv. Mat. Univ. Parma 14 (1988), 303-313.
- B. Y. Chen and L. Vanhecke, Differential geometry of geodesic spheres, J. Reine Angew. Math. 325 (1981), 28-67.
- J. C. González-Dávila, M. C. González-Dávila and L. Vanhecke, Reflections and isometric flows, Kyungpook Math. J. 35 (1995), 113-144.
- J. C. González-Dávila, M. C. González-Dávila and L. Vanhecke, Classification of Killing-transversally symmetric spaces, Tsukuba J. Math. 20 (1996), 321-347.
- J. C. González-Dávila, M. C. González-Dávila and L. Vanhecke, Normal flow space forms and their classification, Publ. Math. Debrecen 48 (1996), 151-173.
- J. C. González-Dávila and L. Vanhecke, Geodesic spheres and isometric flows, Colloq. Math. 67 (1994), 223-240.
- J. C. González-Dávila and L. Vanhecke, D'Atri spaces and C-spaces in flow geometry, Indian J. Pure Appl. Math. 29 (1998), 487-499.
- A. Gray and L. Vanhecke, Riemannian geometry as determined by the volumes of small geodesic balls, Acta Math. 142 (1979), 157-198.
- D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), 1-27.
- O. Kowalski, F. Prüfer and L. Vanhecke, D'Atri spaces, in: Topics in Geometry: In Memory of Joseph D'Atri, S. Gindikin (ed.), Progr. Nonlinear Differential Equations, 20, Birkhäuser, Boston, 1996, 241-284.
- O B. O'Neill, The fundamental equation of a submersion, Michigan Math. J. 13 (1966), 459-469.
- Y. Shibuya, The spectrum of Sasakian manifolds, Kodai Math. J. 3 (1980), 197-211.
- Y. Shibuya, Some isospectral problems, ibid. 5 (1982), 1-12.
- I. M. Singer, Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685-697.
- T T. Takahashi, Sasakian φ-symmetric spaces, Tôhoku Math. J. 29 (1977), 91-113.
- Ph. Tondeur, Foliations on Riemannian Manifolds, Universitext, Springer, Berlin, 1988.
- Ph. Tondeur and L. Vanhecke, Transversally symmetric Riemannian foliations, Tôhoku Math. J. 42 (1990), 307-317.
- F. Tricerri and L. Vanhecke, Decomposition of a space of curvature tensors on a quaternionic Kähler manifold and spectrum theory, Simon Stevin 53 (1979), 163-173.
- F. Tricerri and L. Vanhecke, Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), 365-398.
- F. Tricerri and L. Vanhecke, Variétés riemanniennes dont le tenseur de courbure est celui d'un espace symétrique irréductible, C. R. Acad. Sci. Paris Sér. I 302 (1986), 233-235.
- L. Vanhecke, Scalar curvature invariants and local homogeneity, Rend. Circ. Mat. Palermo (2) Suppl. 49 (1997), 275-287.
- Y. Watanabe, Geodesic symmetries in Sasakian locally φ-symmetric spaces, Kodai Math. J. 3 (1980), 48-55.
- K. Yano and S. Ishihara, Fibred spaces with invariant Riemannian metric, Kōdai Math. Sem. Rep. 19 (1967), 317-360.
- K. Yano and M. Kon, Structures on Manifolds, Ser. Pure Math. 3, World Scientific, Singapore, 1984.