ArticleOriginal scientific text

Title

Full embeddings of almost split sequences over split-by-nilpotent extensions

Authors 1, 2

Affiliations

  1. Département de mathématiques et d'informatique, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1 Canada
  2. Department of Mathematics, Syracuse University, Syracuse, NY 13244, U.S.A.

Abstract

Let R be a split extension of an artin algebra A by a nilpotent bimodule _AQA, and let M be an indecomposable non-projective A-module. We show that the almost split sequences ending with M in mod A and mod R coincide if and only if HomA(Q,τAM) = 0 and MAQ=0.

Keywords

Auslan-der-Reiten translate, split-by-nilpotent extension, almost split sequence

Bibliography

  1. I. Assem and F. U. Coelho, Glueings of tilted algebras, J. Pure Appl. Algebra 96 (1994), 225-243.
  2. I. Assem and N. Marmaridis, Tilting modules over split-by-nilpotent extensions, Comm. Algebra 26 (1998), 1547-1555.
  3. M. Auslander and I. Reiten, Representation theory of artin algebras V, ibid. 5 (1997), 519-554.
  4. M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras, Cambridge Univ. Press, 1995.
  5. K. R. Fuller, *-Modules over ring extensions, Comm. Algebra 25 (1997), 2839-2860.
  6. D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press, 1998.
  7. M. Hoshino, Trivial extensions of tilted algebras, Comm. Algebra 10 (1982), 1965-1999.
  8. D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. 46 (1983), 347-364.
  9. N. Marmaridis, On extensions of abelian categories with applications to ring theory, J. Algebra 156 (1993), 50-64.
  10. C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
  11. A. Skowroński, Minimal representation-infinite artin algebras, Math. Proc. Cambridge Philos. Soc. 116 (1994), 229-243.
  12. H. Tachikawa, Representations of trivial extensions of hereditary algebras, in: Lecture Notes in Math. 832, Springer, 1980, 579-599.
  13. K. Yamagata, Extensions over hereditary artinian rings with self-dualities I, J. Algebra 73 (1981), 386-433.
Pages:
21-31
Main language of publication
English
Received
1998-11-30
Accepted
1998-12-10
Published
1999
Exact and natural sciences