ArticleOriginal scientific text

Title

On quasitilted algebras which are one-point extensions of hereditary algebras

Authors 1, 2

Affiliations

  1. Fakultät für Mathematik, Technische Universität Chemnitz, Postfach 964, D-09107 Chemnitz, Germany
  2. Institutt for matematiske fag, Fakultet for fysikk, informatikk og matematikk, Norges teknisk-naturvitenskaplige universitet, N-7491 Trondheim, Norway

Abstract

Quasitilted algebras have been introduced as a proper generalization of tilted algebras. In an earlier article we determined necessary conditions for one-point extensions of decomposable finite-dimensional hereditary algebras to be quasitilted and not tilted. In this article we study algebras satisfying these necessary conditions in order to investigate to what extent the conditions are sufficient.

Bibliography

  1. [ARS] M. Auslander, I. Reiten and S. Smalο, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, Cambridge, 1995.
  2. [Ha] D. Happel, Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press, Cambridge-New York, 1988.
  3. [HR1] D. Happel and I. Reiten, Directing objects in hereditary categories, in: Contemp. Math. 229, Amer. Math. Soc., Proviedence, RI, 1998, 169-179.
  4. [HR2] D. Happel and I. Reiten, Hereditary categories with tilting object, Math. Z., to appear.
  5. [HRS] D. Happel, I. Reiten and S. O. Smalο, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996).
  6. [HS] D. Happel and I. H. Slungård, One-point extensions of hereditary algebras, in: Algebras and Modules, II (Geiranger, 1996), CMS Conf. Proc. 24, Amer. Math. Soc., Providence, RI, 1998, 285-291.
  7. [Hü] T. Hübner, Exzeptionelle Vektorbündel und Reflektionen an Kippgarben über projektiven gewichteten Kurven, dissertation, Universität-GH Paderborn, 1996.
  8. [LM] H. Lenzing and H. Meltzer, Tilting sheaves and concealed-canonical algebras, in: Representation Theory of Algebras (Cocoyoc, 1994), CMS Conf. Proc. 18, Amer. Math. Soc., Providence, RI, 1996, 455-473.
  9. [LP] H. Lenzing and J. A. de la Pe na, Wild canonical algebras, Math. Z. 224 (1997), 403-425.
  10. [LS] H. Lenzing and A. Skowroński, Quasitilted algebras of cannonical type, Colloq. Math. 71 (1996), 161-181.
  11. [Ri] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin-New York, 1984.
  12. [Sk] A. Skowroński, Tame quasitilted algebras, J. Algebra 203 (1998), 470-490.
Pages:
141-152
Main language of publication
English
Received
1999-02-10
Published
1999
Exact and natural sciences