ArticleOriginal scientific text

Title

On quasi-p-bounded subsets

Authors 1, 2

Affiliations

  1. Departament de Matemàtiques, Universitat Jaume I, Campus de Penyeta Roja s/n 12071, Castelló, Spain
  2. Departamento de Matemáticas, Facultad de Ciencias, U.N.A.M., Ciudad Universitaria, México 04510, México

Abstract

The notion of quasi-p-boundedness for p ∈ ω is introduced and investigated. We characterize quasi-p-pseudocompact subsets of β(ω) containing ω, and we show that the concepts of RK-compatible ultrafilter and P-point in ω can be defined in terms of quasi-p-pseudocompactness. For p ∈ ω, we prove that a subset B of a space X is quasi-p-bounded in X if and only if B × PRK(p) is bounded in X × PRK(p), if and only if clβ(X×PRK(p))(B×PRK(p))=clβXB×β(ω), where PRK(p) is the set of Rudin-Keisler predecessors of p.

Keywords

free ultrafilter, P-point, (quasi)-p-pseudocompact space, Rudin-Keisler pre-order, p-limit point, (quasi)-p-bounded subset, bounded subset

Bibliography

  1. A. R. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1970), 185-193.
  2. J. L. Blasco, Two problems on kr-spaces, Acta Math. Hungar. 32 (1978), 27-30.
  3. A. Blass and S. Shelah, There may be simple P1-points and P2-points and the Rudin-Keisler ordering may be downward directed, Ann. Pure Appl. Logic 33 (1987), 213-243.
  4. R. Engelking, General Topology, Polish Sci. Publ., Warszawa, 1977.
  5. Z. Frolík, Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87-91.
  6. Z. Frolík, The topological product of two pseudocompact spaces, Czechoslovak Math. J. 85 (1960), 339-349.
  7. S. García-Ferreira, Some generalizations of pseudocompactness, in: Ann. New York Acad. Sci. 728, New York Acad. Sci., 1994, 22-31.
  8. S. García-Ferreira, V. I. Malykhin and A. Tamariz-Mascarúa , Solutions and problems on convergence structures to ultrafilters, Questions Answers Gen. Topology 13 (1995), 103-122 .
  9. S. García-Ferreira, M. Sanchis and S. Watson , Some remarks on the product of Cα-compact subsets, Czechoslovak Math. J., to appear.
  10. J. Ginsburg and V. Saks, Some applications of ultrafilters in topology, Pacific J. Math. 57 (1975), 403-418.
  11. S. Hernández, M. Sanchis and M. Tkačenko , Bounded sets in spaces and topological groups, Topology Appl., to appear.
  12. A. Kato, A note on pseudocompact kr-spaces, Proc. Amer. Math. Soc. 61 (1977), 175-176.
  13. M. Katětov, Characters and types of point sets, Fund. Math. 50 (1961), 367-380.
  14. M. Katětov, Products of filters, Comment. Math. Univ. Carolin. 9 (1968), 173-189.
  15. N. N. Noble, Ascoli theorems and the exponential map, Trans. Amer. Math. Soc. 143 (1969), 393-411.
  16. N. N. Noble, Countably compact and pseudocompact products, Czechoslovak Math. J. 19 (1969), 390-397.
  17. M. E. Rudin, Partial orders on the types of βℕ, Trans. Amer. Math. Soc. 155 (1971), 353-362.
  18. M. Sanchis and A. Tamariz-Mascarúa, p-pseudocompactness and related topics in topological spaces, Topology Appl., to appear.
  19. M. G. Tkačenko, Compactness type properties in topological groups, Czechoslovak Math. J. 113 (1988), 324-341.
Pages:
175-189
Main language of publication
English
Received
1998-02-06
Accepted
1998-09-28
Published
1999
Exact and natural sciences