Download PDF - On quasi-p-bounded subsets
ArticleOriginal scientific text
Title
On quasi-p-bounded subsets
Authors 1, 2
Affiliations
- Departament de Matemàtiques, Universitat Jaume I, Campus de Penyeta Roja s/n 12071, Castelló, Spain
- Departamento de Matemáticas, Facultad de Ciencias, U.N.A.M., Ciudad Universitaria, México 04510, México
Abstract
The notion of quasi-p-boundedness for p ∈ is introduced and investigated. We characterize quasi-p-pseudocompact subsets of β(ω) containing ω, and we show that the concepts of RK-compatible ultrafilter and P-point in can be defined in terms of quasi-p-pseudocompactness. For p ∈ , we prove that a subset B of a space X is quasi-p-bounded in X if and only if B × is bounded in X × , if and only if , where is the set of Rudin-Keisler predecessors of p.
Keywords
free ultrafilter, P-point, (quasi)-p-pseudocompact space, Rudin-Keisler pre-order, p-limit point, (quasi)-p-bounded subset, bounded subset
Bibliography
- A. R. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1970), 185-193.
- J. L. Blasco, Two problems on
-spaces, Acta Math. Hungar. 32 (1978), 27-30. - A. Blass and S. Shelah, There may be simple
-points and -points and the Rudin-Keisler ordering may be downward directed, Ann. Pure Appl. Logic 33 (1987), 213-243. - R. Engelking, General Topology, Polish Sci. Publ., Warszawa, 1977.
- Z. Frolík, Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87-91.
- Z. Frolík, The topological product of two pseudocompact spaces, Czechoslovak Math. J. 85 (1960), 339-349.
- S. García-Ferreira, Some generalizations of pseudocompactness, in: Ann. New York Acad. Sci. 728, New York Acad. Sci., 1994, 22-31.
- S. García-Ferreira, V. I. Malykhin and A. Tamariz-Mascarúa , Solutions and problems on convergence structures to ultrafilters, Questions Answers Gen. Topology 13 (1995), 103-122 .
- S. García-Ferreira, M. Sanchis and S. Watson , Some remarks on the product of
-compact subsets, Czechoslovak Math. J., to appear. - J. Ginsburg and V. Saks, Some applications of ultrafilters in topology, Pacific J. Math. 57 (1975), 403-418.
- S. Hernández, M. Sanchis and M. Tkačenko , Bounded sets in spaces and topological groups, Topology Appl., to appear.
- A. Kato, A note on pseudocompact
-spaces, Proc. Amer. Math. Soc. 61 (1977), 175-176. - M. Katětov, Characters and types of point sets, Fund. Math. 50 (1961), 367-380.
- M. Katětov, Products of filters, Comment. Math. Univ. Carolin. 9 (1968), 173-189.
- N. N. Noble, Ascoli theorems and the exponential map, Trans. Amer. Math. Soc. 143 (1969), 393-411.
- N. N. Noble, Countably compact and pseudocompact products, Czechoslovak Math. J. 19 (1969), 390-397.
- M. E. Rudin, Partial orders on the types of βℕ, Trans. Amer. Math. Soc. 155 (1971), 353-362.
- M. Sanchis and A. Tamariz-Mascarúa,
-pseudocompactness and related topics in topological spaces, Topology Appl., to appear. - M. G. Tkačenko, Compactness type properties in topological groups, Czechoslovak Math. J. 113 (1988), 324-341.