ArticleOriginal scientific text

Title

Strong {calS}-groups

Authors 1, 1

Affiliations

  1. Department of Mathematics, Auburn University, Auburn, Alabama 36849-5310, U.S.A.

Bibliography

  1. U. Albrecht, The construction of A-solvable abelian groups, Czechoslovak Math. J. 44 (119) (1994), 413-430.
  2. U. Albrecht and H. P. Goeters, Pure subgroups of A-projective groups, Acta Math. Hungar. 65 (1994), 217-227.
  3. D. M. Arnold, Endomorphism rings and subgroups of finite rank torsion-free abelian groups, Rocky Mountain J. Math. 12 (1982), 241-256.
  4. D. M. Arnold and L. Lady, Endomorphism rings and direct sums of torsion free abelian groups, Trans. Amer. Math. Soc. 211 (1975), 225-237.
  5. R. A. Beaumont and R. S. Pierce, Torsion-free groups of rank 2, Mem. Amer. Math. Soc. 38 (1961).
  6. T. G. Faticoni and H. P. Goeters, On torsion-free Ext, Comm. Algebra 16 (1988), 1853-1876.
  7. H. P. Goeters and W. Ullery, Homomorphic images of completely decomposable finite rank torsion-free groups, J. Algebra 104 (1991), 1-11.
  8. U F. Ulmer, A flatness criterion in Grothendieck categories, Invent. Math. 19 (1973), 331-336.
  9. R. B. Warfield, Extensions of torsion-free abelian groups of finite rank, Arch. Math. (Basel) 23 (1972), 145-150.
Pages:
97-105
Main language of publication
English
Received
1998-02-09
Accepted
1998-09-03
Published
1999
Exact and natural sciences