ArticleOriginal scientific text

Title

Harmonic functions on the real hyperbolic ball I: Boundary values and atomic decomposition of Hardy spaces

Authors 1

Affiliations

  1. Département de Mathématiques, Faculté des Sciences, Université d'Orléans, BP 6759, F-45067 Orléans Cedex 2, France

Abstract

We study harmonic functions for the Laplace-eltrami operator on the real hyperbolic space _n. We obtain necessary and sufficient conditions for these functions and their normal derivatives to have a boundary distribution. In doing so, we consider different behaviors of hyperbolic harmonic functions according to the parity of the dimension of the hyperbolic ball _n. We then study the Hardy spaces Hp(_n), 0

Keywords

Hardy spaces, atomic decomposition, real hyperbolic ball, boundary values, harmonic functions

Bibliography

  1. P. Ahern, J. Bruna and C. Cascante, Hp-theory for generalized {M}-harmonic functions in the unit ball, Indiana Univ. Math. J. 45 (1996), 103-145.
  2. E. P. van den Ban and H. Schlichtkrull, Assymptotic expansions and boundary values of eigenfunctions on Riemannian symmetric spaces, J. Reine Angew. Math. 380 (1987), 108-165.
  3. A. Bonami, J. Bruna and S. Grellier, On Hardy, BMO and Lipschitz spaces of invariant harmonic functions in the unit ball, Proc. London Math. Soc. 77 (1998), 665-696.
  4. L. Colzani, Hardy spaces on unit spheres, Boll. Un. Mat. Ital. C (6) 4 (1985), 219-244.
  5. A. Erdélyi et al. (eds.), Higher Transcendental Functions I, McGraw-Hill, 1953.
  6. C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137-193.
  7. J. B. Garnett and R. H. Latter, The atomic decomposition for Hardy spaces in several complex variables, Duke Math. J. 45 (1978), 815-845.
  8. P. Jaming, Trois problèmes d'analyse harmonique, PhD thesis, Université d'Orlé- ans, 1998.
  9. S. G. Krantz and S. Y. Li, On decomposition theorems for Hardy spaces on domains in n and applications, J. Fourier Anal. Appl. 2 (1995), 65-107.
  10. J. B. Lewis, Eigenfunctions on symmetric spaces with distribution-valued boundary forms, J. Funct. Anal. 29 (1978), 287-307.
  11. K. Minemura, Harmonic functions on real hyperbolic spaces, Hiroshima Math. J. 3 (1973), 121-151.
  12. K. Minemura, Eigenfunctions of the Laplacian on a real hyperbolic spaces, J. Math. Soc. Japan 27 (1975), 82-105.
  13. H. Samii, Les transformations de Poisson dans la boule hyperbolique, PhD thesis, Université Nancy 1, 1982.
  14. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
Pages:
63-82
Main language of publication
English
Received
1998-08-25
Published
1999
Exact and natural sciences