ArticleOriginal scientific text
Title
Invariant operators on function spaces on homogeneous trees
Authors 1, 2, 3
Affiliations
- School of Mathematics, University of New South Wales, Sydney, NSW 2052, Australia
- Dipartimento di Statistica, Università 'Bicocca', Edificio U7, II piano, viale Sarca 202, I-20100 Milano, Italy
- Facoltà di Scienze, Università dell'Insubria-Polo di Como, via Lucini 3, I-22100 Como, Italy
Keywords
spherical functions, harmonic analysis, homogeneous trees
Bibliography
- [BL] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Grundlehren Math. Wiss. 223, Springer, New York, 1976.
- [CS] J.-L. Clerc and E. M. Stein,
multipliers for noncompact symmetric spaces, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 3911-3912. - [CGM] M. Cowling, S. Giulini and S. Meda,
estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces. I, Duke Math. J. 72 (1993), 109-150. - M. Cowling, S. Meda and A. G. Setti, Estimates for functions of the Laplace operator on homogeneous trees, Trans. Amer. Math. Soc., to appear.
- M. Cowling, S. Meda and A. G. Setti, An overview of harmonic analysis on the group of isometries of a homogeneous tree, Exposition. Math. 16 (1998), 385-423.
- [FTN] A. Figà-Talamanca and C. Nebbia, Harmonic Analysis and Representa- tion Theory for Groups Acting on Homogeneous Trees, London Math. Soc. Lecture Note Ser. 162, Cambridge Univ. Press, Cambridge, 1991.
- [FTP] A. Figà-Talamanca and M. Picardello, Harmonic Analysis on Free Groups, Lecture Notes in Pure and Appl. Math. 87, Marcel Dekker, New York, 1983.
- [Hö] L. Hörmander, Estimates for translation invariant operators in
spaces, Acta Math. 104 (1960), 93-140. - [Lo] N. Lohoué, Estimations
des coefficients de représentation et opérateurs de convolution, Adv. Math. 38 (1980), 178-221. - [N] C. Nebbia, Groups of isometries of a tree and the Kunze-Stein phenomenon, Pacific J. Math. 133 (1988), 141-149.
- [Py] T. Pytlik, Radial convolutors on free groups, Studia Math. 78 (1984), 178-183.
- [RT] R. Rochberg and M. Taibleson, Factorization of the Green's operator and weak-type estimates for a random walk on a tree, Publ. Mat. 35 (1991), 187-207.