PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 80 | 1 | 147-154
Tytuł artykułu

Quantum logics with classically determined states

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
Rocznik
Tom
80
Numer
1
Strony
147-154
Opis fizyczny
Daty
wydano
1999
otrzymano
1997-05-28
poprawiono
1998-10-26
Twórcy
  • Università degli Studi di Napoli 'Federico II', Dipartimento di Matematica e Applicazioni, Complesso Universitario, Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
autor
  • Technical University of Prague, Faculty of Electrical Engineering, Department of Mathematics, Technická 2, 166 27 Praha 6, Czech Republic
Bibliografia
  • [1] E. Beltranetti and G. Cassinelli, The Logic of Quantum Mechanics, Addison-Wesley, Reading, Mass., 1981.
  • [2] L. Bunce, M. Navara, P. Pták and J. D. M. Wright, Quantum logics with Jauch-Piron states, Quart. J. Math. Oxford 36 (1985), 261-271.
  • [3] R. Greechie, Orthomodular lattices admitting no states, J. Combin. Theory Ser. A 10 (1971), 119-132.
  • [4] S. Gudder, Stochastic Methods of Quantum Mechanics, North-Holland, Amsterdam, 1979.
  • [5] P. de Lucia and P. Morales, A non-commutative version of the Alexandroff decomposition theorem in ordered topological groups, Pubblicazioni del Dipartimento di Matematica e Applicazioni 'R. Caccioppoli', Università degli Studi di Napoli 'Federico II', 1993, 1-21.
  • [6] P. de Lucia and P. Pták, Quantum probability spaces that are nearly classical, Bull. Polish Acad. Sci. Math. 40 (1992), 163-173.
  • [7] V. Müller, Jauch-Piron states on concrete quantum logics, Internat. J. Theoret. Phys. 32 (1993), 433-442.
  • [8] M. Navara and P. Pták, Almost Boolean orthomodular posets, J. Pure Appl. Algebra 60 (1989), 105-111.
  • [9] P. Pták, Exotic logics, Colloq. Math. 54 (1987), 1-7.
  • [10] P. Pták and S. Pulmannová, Orthomodular Structures as Quantum Logics, Kluwer, Dordrecht, 1991.
  • [11] G. Rüttimann, Jauch-Piron states, J. Math. Phys. 18 (1977), 189-193.
  • [12] R. Sikorski, Boolean Algebras, Springer, Berlin, 1964.
  • [13] R. M. Solovay, Real-valued measurable cardinals, in: Axiomatic Set Theory, Proc. Sympos. Pure Math. 13, Part I, Amer. Math. Soc., Providence, R.I., 1971, 397-428.
  • [14] J. Tkadlec, Partially additive measures and set representations of orthoposets, J. Pure Appl. Algebra 86 (1993), 79-94.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv80i1p147bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.