Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this paper is to develop the homological machinery needed to study amalgams of subrings. We follow Cohn [1] and describe an amalgam of subrings in terms of reduced iterated tensor products of the rings forming the amalgam and prove a result on embeddability of amalgamated free products. Finally we characterise the commutative perfect amalgamation bases.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
241-248
Opis fizyczny
Daty
wydano
1999
otrzymano
1998-03-30
poprawiono
1998-07-13
Twórcy
autor
- Faculty of Mathematical Studies, University of Southampton, Southampton SO17 1BJ, England
Bibliografia
- [1] P. M. Cohn, On the free product of associative rings, Math. Z. 71 (1959), 380-398.
- [2] J. M. Howie, Embedding theorems with amalgamation for semigroups, Proc. London Math. Soc. (3) 12 (1962), 511-534.
- [3] J. M. Howie, Subsemigroups of amalgamated free products of semigroups, ibid. 13 (1963), 672-686.
- [4] J. H. Renshaw, Extension and amalgamation in rings, Proc. Roy. Soc. Edinburgh Sect. A 102 (1986), 103-115.
- [5] J. H. Renshaw, Extension and amalgamation in monoids and semigroups, Proc. London Math. Soc. (3) 52 (1986), 119-141.
- [6] J. H. Renshaw, Perfect amalgamation bases, J. Algebra 141 (1991), 78-92.
- [7] J. H. Renshaw, Subsemigroups of free products of semigroups, Proc. Edinburgh Math. Soc. (2) 34 (1991), 337-357.
- [8] J. R. Rotman, An Introduction to Homological Algebra, Pure and Appl. Math. 85, Academic Press, New York, 1979.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv79z2p241bwm