ArticleOriginal scientific text
Title
Vector-valued ergodic theorems for multiparameter additive processes
Authors 1
Affiliations
- Department of Mathematics Faculty of Science Okayama University Okayama, 700-8530 Japan
Abstract
Let X be a reflexive Banach space and (Ω,Σ,μ) be a σ-finite measure space. Let d ≥ 1 be an integer and T={T(u):u=( , ... , , ≥ 0, 1 ≤ i ≤ d } be a strongly measurable d-parameter semigroup of linear contractions on ((Ω,Σ,μ);X). We assume that to each T(u) there corresponds a positive linear contraction P(u) defined on ((Ω,Σ,μ);ℝ) with the property that ∥ T(u)f(ω)∥ ≤ P(u)∥f(·)∥(ω) almost everywhere on Ω for all f ∈ ((Ω,Σ,μ);X). We then prove stochastic and pointwise ergodic theorems for a d-parameter bounded additive process F in ((Ω,Σ,μ);X) with respect to the semigroup T.
Bibliography
- N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory, Interscience, New York, 1958.
- J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.
- A. M. Garsia, Topics in Almost Everywhere Convergence, Markham, Chicago, 1970.
- S. Hasegawa and R. Sato, On d-parameter pointwise ergodic theorems in
, Proc. Amer. Math. Soc. 123 (1995), 3455-3465. - S. Hasegawa and R. Sato, On a d-parameter ergodic theorem for continuous semigroups of operators satisfying norm conditions, Comment. Math. Univ. Carolin. 38 (1997), 453-462.
- S. Hasegawa, R. Sato and S. Tsurumi, Vector valued ergodic theorems for a one-parameter semigroup of linear operators, Tôhoku Math. J. 30 (1978), 95-106.
- U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.
- R. Sato, Vector valued differentiation theorems for multiparameter additive processes in
spaces, Positivity 2 (1998), 1-18.