ArticleOriginal scientific textIsometric immersions of the hyperbolic space
Title
Isometric immersions of the hyperbolic space into
Authors 1
Affiliations
- Postdoctoral Station of Mathematics, Hangzhou University, Hangzhou 310028, Zhejiang, People's Republic of China
Abstract
We transform the problem of determining isometric immersions from into into that of solving equations of degenerate Monge-Ampère type on the unit ball . By presenting one family of special solutions to the equations, we obtain a great many noncongruent examples of such isometric immersions with or without umbilic set.
Keywords
isometric immersion, Monge-Ampère type equation, hyperbolic space
Bibliography
- K. Abe, Applications of a Riccati type differential equation to Riemannian manifolds with totally geodesic distributions, Tôhoku Math. J. 25 (1973), 425-444.
- K. Abe and A. Haas, Isometric immersions of
into , in: Proc. Sympos. Pure Math. 54, Part 3, Amer. Math. Soc., 1993, 23-30. - K. Abe, H. Mori and H. Takahashi, A parametrization of isometric immersions between hyperbolic spaces, Geom. Dedicata 65 (1997), 31-46.
- D. Ferus, Totally geodesic foliations, Math. Ann. 188 (1970), 313-316.
- D. Ferus, On isometric immersions between hyperbolic spaces, ibid. 205 (1973), 193-200.
- P. Hartman and L. Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer. J. Math. 81 (1959), 901-920.
- Z. J. Hu and G. S. Zhao, Classification of isometric immersions of the hyperbolic space
into , Geom. Dedicata 65 (1997), 47-57. - Z. J. Hu and G. S. Zhao, Isometric immersions from the hyperbolic space
into , Proc. Amer. Math. Soc. 125 (1997), 2693-2697. - A. M. Li, Spacelike hypersurfaces with constant Gauss-Kronecker curvature in Minkowski space, Arch. Math. (Basel) 64 (1995), 534-551.
- W. Massey, Spaces of Gaussian curvature zero in Euclidean
-space, Tôhoku Math. J. 14 (1962), 73-79. - K. Nomizu, Isometric immersions of the hyperbolic plane into the hyperbolic space, Math. Ann. 205 (1973), 181-192.
- V. Oliker and U. Simon, Codazzi tensors and equations of Monge-Ampère type on compact manifolds of constant sectional curvature, J. Reine Angew. Math. 342 (1983), 35-65.
- B. O'Neill and E. Stiel, Isometric immersions of constant curvature manifolds, Michigan Math. J. 10 (1963), 335-339.
- B. G. Wachsmuth, On the Dirichlet problem for the degenerate real Monge-Ampère equation, Math. Z. 210 (1992), 23-35.