ArticleOriginal scientific text

Title

The blow-up solutions of integral equations

Authors 1

Affiliations

  1. Mathematical Institute University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Keywords

blowing-up solutions, nonlinear integral Volterra equations

Bibliography

  1. P. J. Bushell and W. Okrasiński, Uniqueness for a class of non-linear Volterra integral equations with convolution kernel, Math. Proc. Cambridge Philos. Soc. 106 (1989), 547-552.
  2. J. A. Dilellio and W. E. Olmstead, Shear band formation due to thermal flux inhomogeneity, SIAM J. Appl. Math. 57 (1997), 959-971.
  3. G. Gripenberg, S. O. Londen and O. Staffans, Volterra Integral and Functional Equations, Cambridge Univ. Press, 1990.
  4. W. Mydlarczyk, The existence of nontrivial solutions of Volterra equations, Math. Scand. 68 (1991), 83-88.
  5. W. Mydlarczyk, A condition for finite blow-up time for a Volterra equation, J. Math. Anal. Appl. 181 \yr1994 248-253.
  6. W. E. Olmstead, C. A. Roberts and K. Deng, Coupled Volterra equations with blow-up solutions, J. Integral Equations Appl. 7 (1995), 499-516.
  7. C. A. Roberts, D. G. Lasseigne and W. E. Olmstead, Volterra equations which model explosion in a diffusive medium, ibid. 5 (1993), 531-546.
Pages:
147-156
Main language of publication
English
Received
1998-06-15
Accepted
1998-07-15
Published
1999
Exact and natural sciences