ArticleOriginal scientific text

Title

Hochschild cohomology of piecewise hereditary algebras

Authors 1

Affiliations

  1. Fakultät für Mathematik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany

Bibliography

  1. [BLS] Bautista, R.; Larrión, F.; Salmerón, L.; On simply connected algebras, J. London Math. Soc. (2) 27 (1983), 212-220.
  2. [GL] Geigle, W.; Lenzing, H.; A class of weighted projective curves arising in the representation theory of finite dimensional algebras, in: Singularities, Representations of Algebras, and Vector Bundles, Lecture Notes in Math. 1273, Springer, 1987, 265-297.
  3. [H1] Happel, D.; Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Notes Ser. 119, Cambridge Univ. Press, 1988.
  4. [H2] Happel, D.; Hochschild cohomology of finite dimensional algebras, in: Séminaire d'Algèbre Paul Dubreil et Marie-Paul Malliavin, Lecture Notes in Math. 1404, Springer, 1989, 108-126.
  5. [HR1] Happel, D.; Reiten, I.; Hereditary categories with tilting object, preprint.
  6. [HR2] Happel, D.; Reiten, I.; Directing objects in hereditary categories, preprint.
  7. [HRS1] Happel, D.; Reiten, I.; Smalο, S.; Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 575 (1996).
  8. [HRS2] Happel, D.; Reiten, I.; Smalο, S.; Piecewise hereditary algebras, Arch. Math. (Basel) 66 (1996), 182-186.
  9. [M] Meltzer, H.; Exceptional vector bundles, tilting sheaves and tilting complexes on weighted projective lines, preprint.
  10. [Ri] Rickard, J.; Derived equivalences as derived functors, J. London Math. Soc. (2) 43 (1991), 37-48.
  11. [R] Ringel, C. M.; Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Heidelberg, 1984.
Pages:
261-266
Main language of publication
English
Received
1998-02-24
Accepted
1998-03-23
Published
1998
Exact and natural sciences