ArticleOriginal scientific text
Title
m-Reduction of ordinary differential equations
Authors 1, 2
Affiliations
- Institute of Mathematics, Polish Academy of Sciences, Staromiejska 8/6, 40-013 Katowice, Poland
- Mathematisches Seminar der Universität Kiel, Ludewig-Meyn-Str. 4, D-24098 Kiel, Germany
Bibliography
- C. Chevalley, Séminaire sur la classification de groupes de Lie algébriques, École Norm. Sup., Paris, 1956-1958.
- J. E. Humphreys, Linear Algebraic Groups, Springer, Berlin, 1975.
- E. L. Ince, Ordinary Differential Equations, Dover, New York, 1956.
- I. Kaplansky, An Introduction to Differential Algebra, Hermann, Paris, 1976.
- E. R. Kolchin, Algebraic matrix groups and Picard-Vessiot theory of homogeneous linear ordinary differential equations, Ann. of Math. 49 (1948), 1-42.
- E. R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, New York, 1973.
- S. Lang, Algebra, Addison-Wesley, Reading, 1984.
- A. R. Magid, Lectures on Differential Galois Theory, Amer. Math. Soc., 1994.
- Yu. I. Merzlyakov, Rational Groups, Nauka, Moscow, 1980 (in Russian).
- J. Mikusiński, Operational Calculus, Pergamon Press, New York, 1959.
- K. Skórnik and J. Wloka, Factoring and splitting of s-differential equations in the field of Mikusiński, Integral Transforms and Special Functions 4 (1996), 263-274.
- M. F. Singer, Solving homogeneous linear differential equations in terms of second order linear differential equations, Amer. J. Math. 107 (1985), 663-696.
- M. F. Singer, Algebraic relations among solutions of linear differential equations: Fano's theorem, ibid. 110 (1988) 115-144.
- M. F. Singer, An outline of differential Galois theory, in: Computer Algebra and Differential Equations, E. Tournier (ed.), Academic Press, London, 1989, 3-57.
- C. Tretkoff and M. Tretkoff, Solution of the inverse problem of differential Galois theory in the classical case, Amer. J. Math. 101 (1979), 1327-1332.
- J. T. Wloka, Über lineare s-Differentialgleichungen in der Operatorenrechnung, Math. Ann. 166 (1966), 233-256.
- A. E. Zalesskij, Linear groups, in: Algebra IV, Encyclopaedia Math. Sci. 37, Springer, Berlin, 1993, 97-196.