ArticleOriginal scientific text

Title

Coordinates of maximal roots of weakly non-negative unit forms

Authors 1, 2, 2, 3

Affiliations

  1. Fakultät Mathematik, Universität Bielefeld, P.O. Box 10 01 31, 33501 Bielefeld, Germany
  2. Kiev University, Vladimirskaya St. 64, Kiev 252617, Ukraine
  3. Instituto de Matemáticas, UNAM, Ciudad Universitaria, México 04510, D.F., Mexico

Keywords

positive roots, tame algebras, quadratic forms

Bibliography

  1. [Bo] K. Bongartz, Algebras and quadratic forms, J. London Math. Soc. (2) 28 (1983), 461-469.
  2. [BG] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1982), 331-378.
  3. [DP] A. Dean and J. A. de la Pena, Algorithms for weakly non-negative quadratic forms, Linear Algebra Appl. 235 (1996), 35-46.
  4. [D-Z] P. Dräxler, Yu. A. Drozd, N. S. Golovachtchuk, S. A. Ovsienko and M. M. Zeldych, Towards classification of sincere weakly positive unit forms, European J. Combin. 16 (1995), 1-16.
  5. [Ga] P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Math. 6 (1972), 71-103.
  6. [HP] D. Happel and J. A. de la Pena, Quadratic forms with a maximal sincere root, in: CMS Conf. Proc. 18, Amer. Math. Soc., 1996, 307-315.
  7. [Hu] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Grad. Texts in Math. 9, Springer, New York, 1990.
  8. [Ka] V. G. Kac, Infinite Dimensional Lie Algebras, Cambridge Univ. Press, Cambridge, 1972.
  9. [Ov1] S. Ovsienko, Integral weakly positive forms, in: Schur Matrix Problems and Quadratic Forms, Kiev, 1978, 3-17.
  10. [Ov2] S. Ovsienko, Maximal roots of sincere weakly nonnegative forms, lecture at the workshop on Quadratic Forms in the Representation Theory of Finite-Dimensional Algebras, Bielefeld, November 9-12, 1995.
  11. [Pe1] J. A. de la Pena, On the representation type of one point extensions of tame concealed algebras, Manuscripta Math. 61 (1988), 183-194.
  12. [Pe2] J. A. de la Pena, Algebras with hypercritical Tits form, in: Topics in Algebra, Banach Center Publ. 26, part I, PWN, Warszawa, 1990, 353-369.
  13. [Pe3] J. A. de la Pena, Tame algebras with sincere directing modules, J. Algebra 161 (1993), 171-185.
  14. [Pe4] J. A. de la Pena, The families of two-parametric tame algebras with sincere directing modules, in: CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 361-392.
  15. [Ri] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
  16. [Si] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon and Breach, 1992.
  17. [Sl] P. Slodowy, Beyond Kac-Moody algebras, and inside, in: Lie Algebras and Related Topics, CMS Conf. Proc. 5, Amer. Math. Soc., 1986, 361-370.
  18. [Za] A. G. Zavadskiĭ, Sincere partially ordered sets of finite growth, in: Mat. Inst. Akad. Nauk USSR, preprint 81.27, Kiev, 1981, 30-42 (in Russian).
Pages:
163-193
Main language of publication
English
Received
1998-02-19
Published
1998
Exact and natural sciences