ArticleOriginal scientific text

Title

Squares in Lucas sequenceshaving an even first parameter

Authors 1, 2

Affiliations

  1. Department of Mathematics, Queen's University Kingston, Ontario, Canada, K7L 3N6
  2. Department of Mathematics and Computer Science, University of Missouri-St. Louis, St. Louis, Missouri 63121 U.S.A.

Bibliography

  1. J. H. E. Cohn, Squares in some recurrent sequences, Pacific J. Math. 41 (1972), 631-646.
  2. W. Ljunggren, Über die unbestimmte Gleichung Ax2-By4=C, Arch. Math. Naturvid. 41 (1938), 3-18.
  3. W. Ljunggren, Zur Theorie der Gleichung x2+1=Dy4, Avh. Norske Vid. Akad. Oslo. I, No. 5 (1942), 1-26.
  4. W. Ljunggren, New propositions about the indeterminate equation {xn-1}over{x-1}=yq, Norske Mat. Tidskr. 25 (1943), 17-20.
  5. L. J. Mordell, Diophantine Equations, Pure Appl. Math. 30, Academic Press, London, 1969.
  6. A. Pethő, Perfect powers in second order linear recurrences, J. Number Theory 15 (1982), 5-13.
  7. P. Ribenboim, The Book of Prime Number Records, Springer, New York, 1989.
  8. P. Ribenboim and W. L. McDaniel, The square terms in Lucas sequences, J. Number Theory 58 (1996), 104-123.
  9. N. Robbins, Some identities and divisibility properties of linear second-order recursion sequences, Fibonacci Quart. 20 (1982), 21-24.
  10. A. Rotkiewicz, Applications of Jacobi's symbol to Lehmer's numbers, Acta Arith. 42 (1983), 163-187.
Pages:
29-34
Main language of publication
English
Received
1997-12-30
Published
1998
Exact and natural sciences