PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 78 | 1 | 1-17
Tytuł artykułu

Evaluation maps, restriction maps, and compactness

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
Słowa kluczowe
Rocznik
Tom
78
Numer
1
Strony
1-17
Opis fizyczny
Daty
wydano
1998
otrzymano
1997-09-30
Twórcy
  • Department of Mathematics, University of North Texas, Denton, Texas 76203-5116 U.S.A.
autor
  • Department of Mathematics, University of North Texas, Denton, Texas 76203-5116 U.S.A.
autor
  • Department of Mathematics Hardin-Simmens University Abilene, Texas 79698 U.S.A.
Bibliografia
  • [1] D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. 88 (1968), 35-46.
  • [2] K. Andrews, Dunford-Pettis sets in the space of Bochner integrable functions, Math. Ann. 241 (1979), 35-41.
  • [3] R. G. Bartle, N. Dunford and J. Schwartz, Weak compactness and vector measures, Canad. J. Math. 7 (1955), 289-305.
  • [4] E. M. Bator, Remarks on completely continuous operators, Bull. Polish Acad. Sci. Math. 37 (1987), 409-413.
  • [5] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.
  • [6] R. G. Bilyeu and P. W. Lewis, Some mapping properties of representing measures, Ann. Mat. Pura Appl. 109 (1976), 273-287.
  • [7] R. G. Bilyeu and P. W. Lewis, Vector measures and weakly compact operators on continuous function spaces: A survey, in: Measure Theory and its Applications, Proc. Measure Theory Conf., DeKalb, Ill., 1980, G. A. Goldin and R. F. Wheeler (eds.), Northern Illinois Univ., DeKalb, Ill, 1981, 165-172.
  • [8] F. Bombal, On (V*) sets and Pełczyński's property (V*), Glasgow Math. J. 32 (1990), 109-120.
  • [9] F. Bombal, On (V) and (V*) sets in vector-valued function spaces, preprint.
  • [10] J. Bourgain and F. Delbaen, A class of special $\cal L_\infty$ spaces, Acta Math. 145 (1981), 155-176.
  • [11] J. Bourgain and J. Diestel, Limited operators and strict cosingularity, Math. Nachr. 119 (1984), 55-58.
  • [12] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, 1984.
  • [13] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
  • [14] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud. 57, North-Holland, New York, 1981.
  • [15] N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory, Pure and Appl. Math. 7, Interscience, New York, 1958.
  • [16] J. Elton and E. Odell, The unit ball of every infinite-dimensional normed linear space contains a (1+ ε)-separated sequence, Colloq. Math. 44 (1981), 105-109.
  • [17] G. Emmanuele, A dual characterization of Banach spaces not containing $l^1$, Bull. Polish Acad. Sci. Math. 34 (1986), 155-160.
  • [18] G. Emmanuele, On the reciprocal Dunford-Pettis property in projective tensor products, Math. Proc. Cambridge Philos. Soc. 109 (1991), 161-166.
  • [19] G. Emmanuele, Banach spaces on which Dunford-Pettis sets are relatively compact, Arch. Math. (Basel) 58 (1992), 477-485.
  • [20] G. Emmanuele, personal communication.
  • [21] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canad. J. Math. 5 (1953), 129-173.
  • [22] J. Hagler and W. B. Johnson, On Banach spaces whose dual balls are not weak* sequentially compact, Israel J. Math. 28 (1977), 325-330.
  • [23] R. C. James, A non-reflexive Banach space isometric with its second conjugate, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 174-177.
  • [24] R. C. James, Separable conjugate spaces, Pacific J. Math. 10 (1960), 563-571.
  • [25] T. Leavelle, The reciprocal Dunford-Pettis and Radon-Nikodym properties in Banach spaces, Ph.D. dissertation, Univ. of North Texas, 1984.
  • [26] E. Odell and H. P. Rosenthal, A double-dual characterization of separable Banach spaces containing $l^1$, Israel J. Math. 20 (1975), 375-384.
  • [27] A. Pełczyński, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641-648.
  • [28] A. Pełczyński, On strictly singular and stictly cosingular operators. II, ibid. 13 (1965), 37-41.
  • [29] H. Rosenthal, A characterization of Banach spaces containing $l^1$, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413.
  • [30] H. Rosenthal, Pointwise compact subsets of the first Baire class, Amer. J. Math. 99 (1977), 362-378.
  • [31] E. Saab, Some characterizations of weak Radon-Nikodym sets, Proc. Amer. Math. Soc. 86 (1982), 307-311.
  • [32] I. Singer, Bases in Banach Spaces II, Springer, 1981.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv78z1p1bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.