ArticleOriginal scientific text
Title
The Grothendieck group of G-equivariant modules over coordinate rings of G-orbits
Authors 1, 1, 2
Affiliations
- Faculty of Mathematics and Informatics, Nicolas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
- Department of Mathematics, Northeastern University, Boston, Massachusetts 02115, U.S.A.
Bibliography
- [A] M. Aschbacher, The 27-dimensional module for E_6. I, Invent. Math. 89 (1987), 159-195.
- [D] M. Demazure, A very simple proof of Bott's theorem, ibid. 33 (1976), 271-272.
- [H-U] R. Howe and T. Umeda, The Capelli identity, the double commutant theorem, and multiplicity free actions, Math. Ann. 290 (1991), 565-619.
- [I] J. Igusa, A classification of spinors up to dimension twelve, Amer. J. Math. 92 (1970), 997-1028.
- [K] V. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), 190-213.
- [W] J. Weyman, The Grothendieck group of GL(F)×GL(G)-equivariant modules over the coordinate ring of determinantal varietes, Colloq. Math. 76 (1998), 243-263.