ArticleOriginal scientific text
Title
Disjointness preserving mappings between Fourier algebras
Authors 1
Affiliations
- Departamento de Matemáticas, Universidad Jaume I, Campus Penyeta, E-12071 Castellón, Spain
Bibliography
- Y. Abramovich, Multiplicative representation of disjointness preserving operators, Indag. Math. 45 (1983), 265-279.
- J. Araujo, E. Beckenstein and L. Narici, Biseparating maps and homeomorphic real-compactifications, J. Math. Anal. Appl. 192 (1995), 258-265.
- J. Araujo and J. J. Font, Linear isometries between subspaces of continuous functions, Trans. Amer. Math. Soc. 349 (1997), 413-428.
- W. Arendt and J. De Cannière, Order isomorphisms of Fourier algebras, J. Funct. Anal. 50 (1983), 1-7.
- W. Arendt and D. R. Hart, The spectrum of quasi-invertible disjointness preserving operators, ibid. 68 (1986), 149-167.
- A. Derighetti, Some results on the Fourier-Stieltjes algebra of a locally compact group, Comment. Math. Helv. 45 (1970), 219-228.
- P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236.
- A. Figà-Talamanca et M. Picardello, Multiplicateurs de A(G) qui ne sont pas dans B(G), C. R. Acad. Sci. Paris Sér. A 277 (1973), 117-119.
- J. J. Font, Automatic continuity of certain linear isomorphisms between regular Banach function algebras, Glasgow Math. J. 39 (1997), 333-343.
- J. J. Font and S. Hernández, On separating maps between locally compact spaces, Arch. Math. (Basel) 63 (1994), 158-165.
- J. J. Font and S. Hernández, Automatic continuity and representation of certain linear isomorphisms between group algebras, Indag. Math. (N.S.) 6 (1995), 397-409.
- J. J. Font and S. Hernández, Algebraic characterizations of locally compact groups, J. Austral. Math. Soc. Ser. A 62 (1997), 405-420.
- T. W. Gamelin, Uniform Algebras, Chelsea, New York, 1969.
- S. Hernández, E. Beckenstein and L. Narici, Banach-Stone theorems and separating maps, Manuscripta Math. 86 (1995), 409-416.
- C. Huijsmans and B. de Pagter, Invertible disjointness preserving operators, Proc. Edinburgh Math. Soc. 37 (1993), 125-132.
- K. Jarosz, Automatic continuity of separating linear isomorphisms, Canad. Math. Bull. 33 (1990), 139-144.
- K A. Koldunov, Hammerstein operators preserving disjointness, Proc. Amer. Math. Soc. 123 (1995), 1083-1095.
- R. Larsen, An Introduction to the Theory of Multipliers, Springer, Berlin, 1971.
- M. E. Walter,
-algebras and nonabelian harmonic analysis, J. Funct. Anal. 11 (1972), 17-38.