ArticleOriginal scientific text

Title

Representing idempotents as a sum of two nilpotents - an approach via matrices over division rings

Authors 1

Affiliations

  1. Institute of Mathematics University of Warsaw Banacha 2 02-097 Warszawa, Poland

Bibliography

  1. G. M. Bergman, The diamond lemma for ring theory, Adv. Math. 29 (1978), 178-218.
  2. L. A. Bokut', Embedding into simple associative algebras, Algebra i Logika 15 (1976), no. 2, 117-142 (in Russian).
  3. M. Ferrero and E. R. Puczyłowski, On rings which are sums of two subrings, Arch. Math. (Basel) 53 (1989), 4-10.
  4. M. Ferrero, E. R. Puczyowski and S. Sidki, On the representation of an idempotent as a sum of nilpotent elements, Canad. Math. Bull. 39 (1996), 178-185.
  5. I. N. Herstein, Noncommutative Rings, Wiley, New York, 1968.
  6. O. H. Kegel, Zur Nilpotenz gewisser assoziativer Ringe, Math. Ann. 149 (1962/63), 258-260.
  7. O. H. Kegel, On rings that are sums of two subrings, J. Algebra 1 (1964), 103-109.
  8. A. V. Kelarev, A sum of two locally nilpotent rings may be not nil, Arch. Math. (Basel) 60 (1993), 431-435.
  9. J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley, New York, 1987.
  10. A. Salwa, Structure of skew linear semigroups, Internat. J. Algebra Comput. 3 (1993), 101-113.
  11. A. Salwa, Rings that are sums of two locally nilpotent subrings, Comm. Algebra 24 (1996), 3921-3931.
  12. L. W. Small, J. T. Stafford and R. B. Warfield, Affine algebras of Gelfand-Kirillov dimension one are PI, Math. Proc. Cambridge Philos. Soc. 97 (1985), 407-414.
Pages:
59-83
Main language of publication
English
Received
1997-06-16
Accepted
1997-10-29
Published
1998
Exact and natural sciences